

Hindi Vidya Prachar Samiti's

Ramniranjan Jhunjhunwala College

of Arts, Science & Commerce

(Autonomous College)

Affiliated to

UNIVERSITY OF MUMBAI

Syllabus for the F.Y.B.Sc.

Program: B.Sc. BOTANY

Program Code: RJSUBOT

(CBCS 2019-2020)

DISTRIBUTION OF TOPICS AND CREDITS

F.Y.B.Sc. BOTANY SEMESTER I

Course	Nomenclature	Credits	Topics
RJSUBOT101	Plant Diversity I	02	1. Algae
			2. Fungi
			3. Bryophyta
RJSUBOTI02	Forms & Functions I	02	4. Cytology
			5. Physiology
			6. Genetics
RJSUBOTP101	Practical I & II	02	
& RJSUBOTP102			

F.Y.B.Sc. BOTANY SEMESTER II

Course	Nomenclature	Credits	Topics
RJSUBOT201	Plant Diversity I	02	1. Pteridophyta
			2. Gymnosperms
			3. Angiosperms
RJSUBOT202	Forms & Functions I	02	4. Anatomy
			5. Ecology
			6. Medicinal Botany
RJSUBOTP201 &	Practical I & II	02	
RJSUBOTP202			

SEMESTER I (THEORY) L Cr Paper Code: RJSUBOT101 Paper-I: Plant Diversity I 45 2 **UNIT I** 15 ALGAE 1 Outline classification up to Division as per G.M. Smith (reasons to be specified). 2 General characters of Chlorophyta based upon - Range of thallus, Cell structure and types of chloroplast, reproduction. Economic importance of Chlorophyta. 3 Spirogyra- Systematic position, Life cycle, Alternation of generations. **UNIT II** 15 **FUNGI** 1 Outline classification up to Class as per G.M. Smith (reasons to be specified). General characters of Phycomycetes based uon- Thallus structure 2 and reproduction. Economic importance of Phycomycetes. 3 Rhizopus- Systematic position, Life cycle, Alternation of generations. 4 Modes of nutrition in fungi – all types. **UNIT III** 15 **BRYOPHYTA** 1 Outline classification up to class as per G.M. Smith (reasons to be specified). General characters of Hepaticae based on - Thallus structure, 2 reproduction. 3 *Riccia* - Systematic position, Life cycle, Alternation of generations.

F.Y.BSc	Semester I Theory
RJSUBOT101	Course Outcomes 1.1:
Paper I	1. Introduce students to algae and let them explore the diversity in the
Plant Diversity	thallus structure ranging from simple to complex. Learn the
I	taxonomy of Chlorophyta represented by Spirogyra. Also create
	awareness about utility of algae in industries like production of
	nutraceuticals, biofuel green fuel technology.
	2. Introduction to fungi from simple Phycomycetes represented by
	Rhizopus life cycle. Modes of nutrition in fungi and economic
	importance of fungi to enable students to think about strain
	selection.
	3. Bryophytes amphibious habitat progressing towards land habitat
	features of bryophytes general characters of Hepaticae and life cycle
	of widely available <i>Riccia</i> .
	Learning outcomes:
	➤ Understanding the diversity of lower plants, its life cycle, type of
	chloroplast and application of algae for commercial purposes.
	> Detailed study of fungi life cycle, mode of nutrition and its selection
	for economic products.
	> Detailed study of bryophytes life cycle, types of thallus and
	alternation of generations. Plant succession.
1	

SEMESTER I (THEORY)			L	Cr
	Paper-II: Forms and Functions-I Paper Code: RJSUBOT102			2
	UNIT I		15	
	CYTOLOG	Y		
1	General structure of plant cell, Struct Plasma membrane (bilayer lipid struc			
2	Ultra structure and functions of t Mitochondria and Microbodies.	the following cell organelles:		
	UNIT II		15	
	PHYSIOLOG	GY		
1	Respiration – Aerobic and Anaerobic, ETS. Different Respiratory substrates.	Glycolysis, Kreb's Cycle and		
2	Plant Water Relations- Water membrane, Osmosis, Imbibition.	Potential, Transport through		
	UNIT III		15	
	GENETICS	S		
1	Phenotype and Genotype.			
2	Mendelian Genetics- Monohybrid cr & Back cross with the help of suitable			
3	Multiple alleles- Characters and exar	mples.		
4	Epistatic and Non-epistatic interaction	ns.		

F.Y.BSc	Semester I Theory
RJSUBOT102	Course Outcomes 1.2:
Paper II	1. Introduction to cell Biology ultrastructure of cell wall, plasma
Form and	membrane, to understand the transport mechanisms via these
Function I	membranes.
	2. Describe the ultrastructure of mitochondria and micro bodies so
	that they are able to correlate with the physiological functions of
	these organelles in the plant cell.
	3. In correlation to study of organelles the biochemical pathway in
	these organelles will be studied. To make students understand
	that various substrates can be utilized in respiration – aerobic,
	anaerobic and fermentation, Concept of anabolism and
	catabolism.
	4. To understand the concept of water transport in plant cells.
	5. To understand the concept of Mendelian inheritance selection of
	model organism. Explanation of monohybrid and dihybrid
	crosses. Terminologies used in genetics, test cross and
	backcross.
	6. To go beyond Mendelian inheritance and understand the
	concept of genetic interaction, epistatic interactions, multiple
	alleles and inheritance of blood groups in man.
	Learning outcomes:
	➤ Basic concept of cell and its ultra-microscopic structure of cell
	organelle.
	> Detailed study of .aerobic and anaerobic respiration and
	different respiratory substrates.
	➤ Detailed study of Mendelian genetics, multiple alleles and
	epistatic and non-epistatic interactions. Genetic basis of
	cultivars.

SEMESTER II (THEORY)			L	Cr
	Paper-I: Plant Diversity I Paper Code: RJSUBOT201		45	2
	UNIT I		15	
	PTERIDOPH	YTA		
1	Outline classification up to Division be specified).	as per G.M. Smith (reasons to		
2	General characters of Pterophyta Reproduction.	based upon – Plant body,		
3	Nephrolepis- Systematic position, generations.	Life cycle, Alternation of		
	UNIT II		15	
	GYMNOSPE	RMS		
1	Outline classification up to Division be specified).	as per Chamberlain (reasons to		
2	General characters of Cycadophyt Reproduction.	ta based upon – Plant body,		
3	Cycas- Systematic position, Life cyc	ele, Alternation of generations.		
4	Economic importance of Gymnosper	rms.		
	UNIT III		15	
	ANGIOSPER	RMS		
1	Morphology-			
	Root- Types and its modifications.			
	Stem- Types and its modifications.			
	Leaf: simple leaf, types of compouvenation, phyllotaxy, types of stipule base, leaf shapes. Modifications of phyllode, pitcher.	es, leaf apex, leaf margin, leaf		
	Morphology of Seed – Monocot, Dendospermic seeds. Seed germination t	=		
2	Taxonomy - Bentham and Hooker's classification — reasons). Study of plant families: Malvaceae, An	-		

F.Y.BSc	Theory Semester II: Plant Diversity
RJSUBOT201	Course Outcomes 2.1:
Plant	1. Land plants, first vascular plants Pteridophytes. Study of
Diversity	Nephrolepis to understand the stages of life cycle and alternation of
	generations.
	2. Gymnosperms identify the characters. Structure life cycle of a
	commonly grown gymnosperm Cycas to understand the stages of
	life cycle.
	3. Morphological modifications of root leaves and seed morphology
	and seed germination so as to understand their function and
	taxonomic relevance. Seed morphology would help them understand
	the storage of primary metabolites; germination would enable them
	to develop skills needed for nursery.
	4. Bentham and Hooker's system of classification. Introduction to
	plant families by study of family Malvaceae and Amaryllidaceae.
	Learning outcomes:
	> Detailed study of first land plants - systematic position, life cycle,
	and alternation of generations.
	> Detailed study of gymnosperms Chamberlain classification, life
	cycle, plant body and alternation of generations.
	Understanding the type of modifications of roots, stems, leaves and
	morphology of seed- monocot and dicot. To apply the gained
	information to understand plant propagation and nutritional value of
	plant parts used as food.
	> Study of Bentham and Hooker's classification for Malvaceae,
	Amaryllidaceae family.

	SEMESTER II (THEORY)			Cr
	Paper-II: Forms and Functions-I Paper Code: RJSUBOT202		45	2
	UNIT I		15	
	ANATOM	Y		
1	Plant tissues:- Simple tissues, Comp	lex tissues.		
2	Anatomy of primary structures – dic leaf.	ot and monocot root, stem and		
3	Epidermis and Epidermal tissue systematics	em.		
	UNIT II		15	
	ECOLOGY	Υ		
1	Ecological pyramids: Based on energ	gy, biomass and number		
2	Energy flow in an ecosystem.			
3	Types of ecosystems – aquatic and to	errestrial.		
4	Biogeochemical cycles – Carbon and	l Nitrogen		
	Hydrological cycle - Water.			
	UNIT III		15	
	MEDICINAL BO	OTANY		
1	Concept of primary and secondary m	netabolites.		
2	Grandma's pouch: Following plants to botanical source, part of the present and medicinal uses: Ocimu Zingiber officinale, Curcuma longa,	plant used, active constituents um sanctum, Adathoda vasica,		

F.Y.BSc	Theory Semester II: Plant Diversity
RJSUBOT202	Course Outcomes 2.2:
Paper II	1. Anatomy of plants, cells, tissues, salient characters of simple and
Form and	complex tissues. Explain the primary structure of dicot and monocot
Function	root, stem and leaf. To allow the students to understand the
	difference in the anatomy of dicot and monocot, learn to apply this
	knowledge in identification of isolated plant organs.
	2. Study of epidermal outgrowths and stomata of dicot and monocot
	leaves.
	3. Ecology: Study of flow of energy at different trophic levels. Study
	of aquatic and terrestrial ecosystems, biogeochemical cycles.
	4. Medicinal Botany: To understand the concept of primary and
	secondary metabolites. Ingredients of grandma's pouch and its
	medicinal uses.
	Learning outcomes:
	> Detailed study of anatomical structures of plant tissues, root, stem,
	leaf and types of epidermis.
	➤ Ecological study of energy pyramid, energy flow, types of
	ecosystem and biogeochemical cycles.
	> Study of difference of primary and secondary metabolites, some
	medicinal use of secondary products.

Semester I (PRACTICALS)			L	Cr
	Practical-I: Plant Diversity I	Paper Code: RJSUBOTP101		1
1	Study of stages in the life cycle of <i>Spi</i> and permanent slides.	rogyra from fresh/ preserved material		
2	Range of thallus in Chlorophyta.			
3	Types of chloroplast in Chlorophyta.			
4	Economic importance of Green algae.			
5	Study of stages in the life cycle of <i>Rhi</i> and permanent slides.	izopus from fresh/ preserved material		
6	Examples of Saprophytic and Parasition	c fungi to explain mode of nutrition.		
7	7 Study of stages in the life cycle of <i>Riccia</i> with the help of permanent slides/ Fresh material.			
Practical-II: Forms and Functions I Paper Code: RJSUBOTP102			1	
1	1 Study of mitotic stages in onion root tip.			
2	Study of Cell inclusions: Starch grain Layer (Maize) Cystolith (Ficus), (Opuntia)			
3	Identification of cell organelles with the Mitochondria, Peroxisomes and Glyon			
4	To study Plasmolysis using suitable p	lant material.		
5 To study Q ₁₀ using germinating seeds.				
6	Effect of change of pH on color of and applications.	chocyanin pigment and its		
7	Calculation of mean, median and mod	e.		
8	Calculation of standard deviation.			
9	Frequency distribution, graphical polygon, histogram, pie chart.	representation of data- frequency		
10	Study of Karyotypes: Human: Normal	I male and female, Allium cepa.		

F.Y.B.Sc	Semester I
RJSUBOTP101	Course Outcomes: Experiential learning, identification of algae and fungi
Practical I	by observing them under microscope
	1. Experiential learning of mounting and identification with the help
	of fresh/preserved material and permanent slides of Spirogyra.
	Vegetative and reproductive lateral and scalariform conjugation.
	2. Range of thallus in green algae single cell, coenobium,
	filamentous, branched, unbranched, parenchymatous.
	3. Economic importance of green algae
	4. Microscopic observation, mounting and identification of
	fresh/preserved material and permanent slides of Rhizopus.
	5. Material of saprophytic and parasitic fungi to explain mode of
	nutrition concept of extracellular enzymes, haustoria.
	6. Study of morphological features and internal structure of <i>Riccia</i>
	with help of fresh /preserved material and permanent slides.
	Learning outcomes: Use of microscope, application of technique of
	microscopy
	➤ Understanding the diversity of lower plants, its life cycle, type of
	thallus and chloroplast and application of green algae for
	commercial purposes.
	> Detailed study of fungi life cycle, mode of nutrition and its
	selection for economical products.
	> Detailed study of bryophyte's life cycle, types of thallus and
	gametophytes.

Course Outcome:
1. Squash proporation to study various stages of mitosis learning the
1. Squash preparation to study various stages of mitosis learning the
technique of chromosomal staining observation of stages of cell
division.
2. Slide preparation to study types of starch grains in potato, pea and rice.
Mounting of aleurone layer from maize grain.
3. Students would take transverse section of Ficus elastica leaf and
observe under light microscope to look at cystolith similarly other
mineral crystals like raphides and sphaeraphides would be observed by
taking transverse section of Pistia leaf and Opuntia phylloclade
respectively. This would enable students to explore the diversity of cell
inclusions in plants. Bio mineralization in plants
4. Cell organelles would be studied using photomicrographs.
5. Water relations of plants using coloured leaves like Tradescantia to
explain concept of plasmolysis, incipient plasmolysis, hyper, hypo and
isotonic solution. Water potential.
6. Introduction to biostatistics, sampling, central tendency calculation of
mean, median and mode, graphical representation of data, frequency
polygon, histogram, pie chart. Calculation of standard deviation.
7. Karyotype analysis of human normal male and female and <i>Allium cepa</i> .
earning outcomes:
> Detailed study of different stages of mitosis, plasmolysis and cell
inclusions.
Basic concept and functions of cell organelles.
Detailed study of respiration with Q ₁₀ .
> Study the effect of change of pH on colour of anthocyanin pigment and
its applications for other natural indicators.
➤ Biostatistical analysis of mean, median, mode and standard deviation.
> Data presentation with the help of frequency distribution, graphical
representation of data- frequency polygon, histogram, pie chart.
Detailed study of Karyotypes

Semester II (PRACTICALS)			Cr
Practical-I: Plant Diversity I	Paper Code: RJSUBOTP201		1
1	Study of stages in the life cycle of <i>Nephrolepis</i> : Mounting of ramentum, hydathode, T.S. of rachis.		
2	T.S. of pinna of <i>Nephrolepis</i> passing through sorus, Structure of Sporangium and spore		
3	Cycas: T.S of leaflet (<i>Cycas</i> pinna), Megasporophyll, microsporophyll, coralloid root, microspore, L.S. of ovule of <i>Cycas</i> — all specimens to be shown.		
4	Morphology of Root.		
5	Morphology of Stem.		
6	Morphology of Leaf – Part I.		
7	Morphology of Leaf- Part II.		
8	Types of seed and seed germination.		
9	Malvaceae		
10	Amaryllidaceae.		
Practical-II: Forms and Functions I	Paper Code: RJSUBOTP202		1
1	Primary structure of dicot and monocot root.		
2	Primary structure of dicot and monocot stem.		
3	Primary structure of Dicot & Monocot leaf (photograph/slide) & Study of dicot and monocot stomata.		

4	Epidermal outgrowths: With the help of mountings- Unicellular: Gossypium/Radish, Multicellular: Lantana/Sunflower. Glandular: Drosera and Stinging: Urtica— only identification with the help of permanent slides. Peltate: Thespesia, Stellate: Erythrina/ Sida acuta/ Solanum/ Helicteres. T-shaped: Avicennia.	
5	Study of plants from terrestrial and aquatic ecosystems – morphological adaptations	
6	Test for tannins: tea powder/catechu.	
7	Identification of plants or plant parts for grandma's pouch as per theory.	

F.Y.B.Sc	Practicals Semester II
RJSUBOTP201	Course Outcomes: Experiential learning, skill development
Practical I	1. Students would learn to observe specimens, identify with the
Plant Diversity I	help of morphological and anatomical characters. Learn the
	technique of sectioning and differentiate the tissues based on cell
	wall characteristics. Learn to observe different stages in the life
	cycle of Nephrolepis, Cycas.
	2. Study of root, stem leaf and seed morphology and types of seed
	germination.
	3. An introduction to classification of flowering plants and study of
	families Malvaceae and Amarylidaceaae.
	Learning outcomes:
	➤ Detailed study <i>Nephrolepis</i> ramentum, hydathode, T.S. of rachis,
	structure of sporangium and spore.
	> Detailed study of Cycas pinna, Megasporophyll,
	Microsporophyll, Coralloid root, Microspore structure.
	> Understanding the morphology of roots, stems, leaves and
	morphology of seed for monocot and dicot.
	> Study of angiosperm families (Malvaceae and Amaryllidaceae)

F.Y.BSc	Practicals Semester II
RJSUBOTP202	Course Outcomes: Skill development
Practical II	1. Sectioning of dicot and monocot root, stem and leaves to study the
Forms and	primary structure. Mounting of epidermal outgrowths. Learner
Functions I	would learn technique of sectioning, staining. Types of epidermal
	outgrowth and its role in a plants life cycle.
	2. Based on observations of morphological characters plants would be
	identified as hydrophytes, mesophytes and xerophytes. Characters
	to be observed for hydrophytes would thin wiry stem, absence of
	roots (submerged), absence of root hair, roots with root pockets,
	lateral roots present, stem modified as offset, swollen petiole,
	leaves coated with wax (free floating), roots with root hair, long
	petiole coated with mucilage, floating leaves coated with wax.
	3. Simple test for tannin's identification and botanical names of plants
	in everyday life to cure common ailments and scientific
	explanation for their curative properties.
	Learning outcomes:
	> Detailed study of anatomical structures of root, stem, leaf, types of
	stomata and epidermal outgrowths.
	Ecological study of plants. Morphological adaptations from
	terrestrial and aquatic ecosystems.
	Assessment of tannins and identification of some medicinal plant
	products.

References

- 1. A Textbook of Botany- Angiosperms by B P Pandey
- 2. A Textbook of Systematic Botany by Sutaria
- 3. Alexopoulos, C.J., Mims, C.W., Blackwell, M. (1996). Introductory Mycology, John Wiley and Sons (Asia), Singapore. 4th edition.
- 4. An introduction to Embryology of Angiosperms by P Maheshwari, McGraw Hill Book Co.
- 5. An introduction to Genetic analysis Griffith Freeman and Company (2000)
- Bajracharya D. (1999). Experiments in Plant Physiology-A Laboratory Manual.
 Narosa Publishing House, New Delhi.
- 7. Berg JM, Tymoczko JL and Stryer L (2011) biochemistry, W.H. Freeman and company.
- 8. Bhatnagar, S.P. & Moitra, A. (1996). Gymnosperms. New Age International (P) Ltd Publishers, New Delhi, India.
- 9. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms. Vikas Publication House Pvt. Ltd., New Delhi. 5th edition.
- 10. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.
- 11. Book for Degree Students- Algae/Fungi/Bryophyta by B R Vasistha.
- 12. Book for Degree Students- Pteridophyta/Gymnospersm by P C Vasistha
- 13. Campbell A. M., Heyer L. J. (2006) Discovering Genomics, Proteomics and Bioinformatics. II Edition. Benjamin Cummings.
- 14. Campbell, PN and Smith AD (2011) biochemistry illustrated. 4th edition, published by Churchill Livingstone.
- 15. Chrispeels, M.J. and Sadava, D.E. (2003). Plants, Genes and Agriculture. Jones & Bartlett Publishers.
- 16. College Botany Volume I and II Gangulee, Das and Dutta latest edition. Central Education enterprises
- 17. Cryptogamic Botany Volume I and II by G M Smith McGraw Hill.
- 18. Dawson C (2002). Practical research methods. UBS Publishers, New Delhi.
- 19. Dickison, W.C. (2000). Integrative Plant Anatomy. Harcourt Academic Press, USA.
- 20. DNA barcoding plants: taxonomy in a new perspective 2010. K Vijayan and C H Tsou, Current Science, 1530 1541.

- 21. Embryology of Plants by Bhojwani and Bhatnagar
- 22. Environmental Biology by Verma & Agrawal
- 23. Esau, K. (1977). Anatomy of Seed Plants. John Wiley & Sons, Inc., Delhi.
- 24. Fundamentals of Biostatics Rastogi Ane Books Pvt Ltd (2009)
- 25. Fundamentals of Ecology by E P Odum and G W Barrett. Thompson Asia Pvt Ltd.Singapore.
- 26. Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics, John Wiley & sons, India. 8th edition.
- 27. Genetics by Russel. Wesley Longman Inc publishers. (5th edition)
- 28. Genetics by Winchester
- 29. Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and Applications of recombinant DNA. ASM Press, Washington.
- 30. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis. W. H. Freeman and Co., U.S.A. 10th edition.
- 31. Harborne, J.B. (1973). Phytochemical Methods. John Wiley & Sons. New York.
- 32. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U. S.A. 4th edition.
- 33. Industrial Microbiology Mac Millan Publications, New Delhi
- 34. Introduction to Bioinformatics by PK Banerjee, Chand Publication
- 35. Introduction to Plant Physiology Noggle and Fritz, Prentice Hall Publisher (2002)
- 36. Jeffrey, C. (1982). An Introduction to *Plant Taxonomy*. Cambridge University Press, Cambridge.
- 37. Karp G (2010). Cell biology, john wiley and sons, USA 6th edition.
- 38. Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics. Benjamin Cummings, U.S.A. 10th edition.
- 39. Kumar, H.D. (1999). Introductory Phycology. Affiliated East-West. Press Pvt. Ltd. Delhi.2nd edition.
- 40. Mauseth, J.D. (1988). Plant Anatomy. The Benjammin/Cummings Publisher, USA.
- 41. Nelson DL, Lehninger AL, Cox MM (2008). Lehninger principles of biochemistry.5th edition, W.H. Freeman and company.
- 42. Parihar, N.S. (1991). An introduction to Embryophyta. Vol. I. Bryophyta. Central Book Depot, Allahabad.
- 43. Physiological Plant Anatomy by Haberlandt, Mac Millan and Company
- 44. Plummer, D.T. (1996). An Introduction to Practical Biochemistry. Tata McGraw-Hill

- Publishing Co. Ltd. New Delhi. 3rd edition.
- 45. Post-Harvest Technology by Verma and Joshi, Indus Publication
- 46. Raghavan, V. (2000). Developmental Biology of Flowering plants, Springer, Netherlands.
- 47. Rastogi, S. C. (2005). Cell biology. New Age International.
- 48. Raven, P.H., Johnson, G.B., Losos, J.B., Singer, S.R., (2005). Biology. Tata McGraw Hill, Delhi, India.
- 49. Robertis, D. (1987). Cell and molecular biology.
- 50. Russell, P. J. (2010). iGenetics- A Molecular Approach. Benjamin Cummings, U.S.A. 3rd edition.
- 51. Sethi, I.K. and Walia, S.K. (2011). Text book of Fungi & Their Allies, MacMillan Publishers Pvt. Ltd., Delhi.
- 52. Shivanna, K.R. (2003). Pollen Biology and Biotechnology. Oxford and IBH Publishing Co. Pvt. Ltd. Delhi.
- 53. Singh, G. (2012). *Plant Systematics:* Theory and Practice. Oxford & IBH Pvt. Ltd., New Delhi. 3rdedition.
- 54. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons Inc., U.S.A. 5th edition.
- 55. Stewart, C.N. Jr. (2008). Plant Biotechnology & Genetics: Principles, Techniques and Applications. John Wiley & Sons Inc. U.S.A.
- 56. Taiz, L., Zeiger, E., MØller, I.M. and Murphy, A (2015). Plant Physiology and Development. Sinauer Associates Inc. USA. 6th edition.
- 57. Taxonomy of Vascular Plants by Lawrence George, H M, Oxford and IBH Publ.
- 58. Vashishta, P.C., Sinha, A.K., Kumar, A., (2010). Pteridophyta, S. Chand. Delhi, India.
- 59. Watson J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2007). Molecular Biology of the Gene, Pearson Benjamin Cummings, CSHL Press, New York, U.S.A. 6th edition.
- 60. Zar, J.H. (2012). Biostatistical Analysis. Pearson Publication, USA. 4th edition.

Scheme of Examinations

- 1. Two Internals of 20 marks each. Duration 20 minutes for each.
- 2. One External (Semester End Examination) of 60 marks. Duration 2 hours.
- 3. One Practical at the end of Semester consisting of practical I-50 marks and Practical II-50 marks but passing combined out of 100.
- 4. Minimum marks for passing Semester End Theory and Practical Exam is 40 %.
- 5. Student must appear for at least one of the two Internal Tests to be eligible for the Semester End Examination
- 6. Two short field excursions for habitat studies are compulsory.
- 7. Field work of not less than eight hours duration is equivalent to one period per week for a batch of 15 students.
- 8. A candidate will be allowed to appear for the practical examinations if he/she submits a certified journal of F.Y.B.Sc. Botany or a certificate from the Head of the department / Institute to the effect that the candidate has completed the practical course of F.Y.B.Sc. Botany as per the minimum requirements.
- 9. In case of loss of journal, a candidate must produce a certificate from the Head of the department /Institute that the practicals for the academic year were completed by the student. However, such a candidate will be allowed to appear for the practical examination, but the marks allotted for the journal will not be granted.
- 10. HOD's decision, in consultation with the Principal, shall remain final and abiding to all.