

Hindi Vidya Prachar Samiti's

Ramniranjan Jhunjhunwala College
of Arts, Science & Commerce
(Autonomous College)

Affiliated to
UNIVERSITY OF MUMBAI

Syllabus for the M.Sc.

Program: M.Sc. BOTANY

Program Code: RJSPGBOT

(CBCS 2020-2021)

SEMESTER I

Course Code	UNIT	TOPIC HEADINGS	Credits	L / Week
RJSPGBOT101	Paper Title: Plant Diversity:Cryptogams I (Algae and Fungi)			
	1	Algae	4	1
	II	Applied Phycology		1
	Ш	Fungi		1
	IV	Applied mycology		1

RJSPGBOT102	Paper Title: Plant Diversity – Spermatophyta I			
	(Gymnos	(Gymnosperms and Angiosperms)		
	1	1		
	П	Origin of Angiosperms		1
	Ш	Angiosperms I		1
	IV	Angiosperms II		1

RJSPGBOT103	Paper Tit	Paper Title: Plant Physiology		
	1	Lipid metabolism	4	1
	II	Carbohydrate metabolism		1
	Ш	Seed Physiology		1
	IV	Plant hormones		1

RJSPGBOT104	Paper Tit	le: Cytogenetics, Molecular Biology	and bio	technology
	1	Cytogenetics	4	1
	II	Molecular Biology		1
	Ш	Recombinant DNA technology		1
	IV	Applications of R-DNA		1
		technology		

RJSPGBOTP101	Plant Diversity: Cryptogams I (Algae and Fungi)	
	Plant Diversity - Spermatophyta I (Gymnosperms and	
RJSPGBOTP102	Angiosperms)	
RJSPGBOTP103	Plant Physiology	2
RJSPGBOTP104	Cytogenetics, Molecular Biology &Biotechnology	2

Theory semester I

Course Code	Title	Credits	
RJSPGBOT101	Plant Diversity-Cryptogams I (Algae and Fungi)	4	
Unit I: Algae		1	
➤ Classification of A	Algae up to orders, according to the system		
proposed by G.M	proposed by G.M Smith. Cyanophyta, Chlorophyta, Euglenophyta,		
Pyrrophyta, Chryso	phyta, Phaeophyta and Rhodophyta.		
Unit II: Applied Phycology		1	
Techniques of culture	ıring Algae		
> Algae as bio fue	el, Algae as single cell protein. Solid waste		
management by fu	ngi and treatment of industrial effluents – dyes by		
laccases and peroxi	dases		
	: Sources of biomass, advantages & disadvantages,		
uses of biomass.			
➤ Biogas production from food processing waste: vegetable canning			
waste, flour, molass			
	ass and Lignocellulosic residue.		
Unit: III Fungi		1	
> Classification of fungi, upto orders, according to the system			
proposed by Alexopoulos.			
➤ General account of spore bearing organs and their arrangements in			
various groups of fungi; spore release and dispersal. Unit: IV Applied Mycology			
Unit: IV Applied Mycology			
> Mycorrhiza: Type, distribution and significance with reference to			
agriculture and forestry.			
Study of the following diseases with reference to symptoms, causal			
organism and disease cycle:			
a. Late blight of potato			
b. Covered	smut of jowar		

M.Sc	Semester I Theory	
RJSPGBOT101	Course Outcomes1.1:	
Paper I	1. Basis of classification, chloroplast type, reserve food,	
Plant	reproduction Cyanophyta, Chlorophyta, Euglenophyta,	
Diversity-	Pyrrophyta, Chrysophyta, Phaeophyta and Rhodophyta.	
Cryptogams I	2. Techniques of culturing Algae for commercial products	
(Algae and	3. Basis of classification, of fungi mycelium, hyphae, spores,	
Fungi)	types of reproduction up to orders and study of spore	
	bearing organs and their arrangements in variousgroups of	
	fungi; spore release and dispersal.	
	4. Study of Mycorrhiza - Type, distribution and significance with	
	reference to agriculture and forestry.	
	5. Detailed study of diseases causes by Plant pathogens with	
	symptoms, causal organism and disease cycle.	
	Learning outcomes:	
	> Understanding the classical botany, diversity of lower plants	
	and application of algae for commercial products	
	➤ Learning the techniques of culturing Algae, biofuel	
	production entrepreneurship	
	> Application of fungal mycorrhiza agricultural applications	
	Knowing the cause of plant diseases agricultural applications	

Course Code	Title	Credits
RJSPGBOT102	Plant Diversity- Spermatophyta I (Gymnosperms	4
	and Angiosperms)	
Unit I: Gymnosperms I		1
> Classification o	f gymnosperms upto orders according to the	
system propose	d by C. J. Chamberlain.	
> General char	acters; affinities and interrelationships of	
Cycadofilicales,	Bennettitales and Cordaitales	
Unit II: Origin of Angio	<u>sperms</u>	1
➤ Origin and €	evolution of angiosperms; the primitive	
angiospermic f	lower; primitive and advanced character in	
angiosperms.		
Unit : III Angiosperms		1
> International Co	ode of Botanical Nomenclature (I.C.B.N.) History	
and basic Princi	ples.	
➤ Concept of characters: - Introduction, type function values of		
taxonomic characters- numerical taxonomy, chemotaxonomy,		
Molecular syste	matics.	
Unit: IV Angiosperms I	<u>l</u>	1
> Evolution, varia	ation and speciation, Biosystematics categories,	
Biotypes and Ec	otypes.	
> Study of F	Plant families: Ranunculaceae, Annonaceae,	
Magnoliaceae,	Anacardiaceae, Sapindaceae, Lythraceae,	
Leguminosae,	Convolvulaceae, Apocyanaceae, Boraginaceae,	
Verbenaceae,	Bignoniaceae, Chenopodiaceae, Liliaceae,	
Orchidaceae		

M.Sc	Semester I Theory
RJSPGBOT102	Course Outcomes1.2:
Paper II	1. C. J. Chamberlain classification of gymnosperms upto
Plant diversity -	orders
Spermatophyta I	2. General characters; affinities and interrelationships of
	Cycadofilicales, Bennettitales and Cordaitales.
	3. Origin and evolution of angiosperms; the primitive
	angiospermic flower; primitive and advanced character
	in angiosperms.
	4. Study of ICBN basic principles for assessment of
	relationships, delimitation of taxa.
	5. Study of evolution, variation and speciation,
	biosystematics categories, biotypes, ecotypes and
	concept of characters for other taxonomic parameters.
	Learning outcomes:
	> Understanding the diversity and characters of
	gymnosperms
	Learning of the evolution of Angiospermic characters
	> Understanding International Code of Botanical
	Nomenclature (I.C.B.N.) and hierarchy of rank in plants
	> Field identification of plants

Course Code	Title	Credits
RJSPGBOT103	Plant Physiology	4
Unit I: Lipid Metabolism		1
Lipids- an overview		
➤ Fatty acid synthesis – eve	en Carbon	
> Synthesis of membrane	lipids	
> Beta oxidation of even co	arbon chain	
Unit II: Carbohydrate metabolis	<u>m</u>	1
Biosynthesis, biodegrada	ation and regulation of	
1. Sucrose		
2. Starch		
3. Cellulose		
<u>Unit:Seed Physiology</u>	1	
Metabolism of food res	1	
Lipids		
Growth factors in germing		
Dormancy – Control and		
Unit: IV Plant Hormones	1	
➤ Plant hormones: Bios	d	
transport of Auxins, G	d	
ABA.		

M.Sc.	Semester I Theory		
RJSPGBOT103	Course Outcomes 1.3:		
Paper-III	1. Detailed study of regulation of photosynthesis pathways (C ₃ ,		
Plant	C ₄ CAM and Pentose Phosphate Pathway)		
Physiology	2. Role of light in the activation of dark phase enzymes,		
	regulation of enzymes.		
	3. Photosynthesis in prokaryotes (Bacteria and Cyanobacteria)		
	4. Detailed study of proteins and plant growth hormones		
	Learning outcomes:		
	> Understanding the regulation and importance enzymes and		
	sunlight in photosynthesis of eukaryotes and prokaryotes.		
	Correlation with productivity		
	> Learning the native and modified form of proteins and its		
	application		
	> Application of plant growths regulators in plant		
	morphogenesis, plant tissue culture and propagation of		
	plants.		

Course Code	Title	Credits
RJSPGBOT104	Cytogenetics, Molecular Biology and Biotechnology	4
Unit I: Cytogen	<u>etics</u>	1
> Cell divis	sion and cell cycle: Steps in cell cycle and control of cell	
cycle.		
Unit II: Molecul	ar Biology	1
Microbia	l Genetics: Molecular basis of transformation,	
transduc	tion, Conjugation; fine structure of the gene, T4	
Phage, c	complementation analysis, deletion mapping, cis-trans	
tests.		
Unit: III Recomb	1	
Vectors		
vectors.	High and low copy number plasmids and its	
regulatio		
Unit: IV Applica	1	
> Application of recombinant DNA technology for production of		
herbicide resistant plants, insect resistant plants, improving		
seed storage proteins and golden rice.		

M.Sc.	emester I theory		
RJSPGBOT104	Course outcomes 1.4:		
Paper-IV	1. Detailed study of Cell division and cell cycle		
Cytogenetics,	2. Exploring microbial genetics with the study of molecular		
Molecular	basis of transformation, transduction, conjugation; fine		
Biology and	structure of the gene, T4 Phage, complementation analysis,		
Biotechnology	deletion mapping, cis-trans tests. Understanding cDNA		
	libraries, restriction enzyme, analysis of cloned DNA		
	sequences and southern hybridization.		
	3. Detailed study of Recombinant DNA Technology of		
	Vectors in gene cloning and production of herbicide		
	resistant plants, insect resistant plants, improving seed		
	storage proteins and golden rice.		
	Learning outcome:		
	> Understanding the steps of cell division and cell cycle.		
	Abnormal cell division.		
	> Understanding detailed concept of molecular Genetics and		
	Recombinant DNA Technology		
	> Applications of Recombinant DNA technology		

Course Code	Practical Title	Credits
RJSPGBOTP101	Plant Diversity-Cryptogams I (Algae and Fungi)	2

- 1. Study of following type with reference to their systematic position, thallus and reproductive structures: *Scytonema*, *Lyngbya*, *Anabaena*, *Oscillatoria*, *Volvox*, *Pandorina*, *Ulothrix*, *Zygnema*, *Cladophora*, *Pithophora*, *Closterium*, *Chara*, *Nitella*, *Dictyota*, *Padina*, *Batrochospermum*, *Gracilaria*
- 2. Preparation of algal herbaria.
- 3. Study of the following type with reference to their systematic position, thallus and reproductive structures: *Saprolegnia, Phytophthora, Penicillium, Peziza, Clavicep, Lycoperdon, Ustilago, Fusarium and Trichoderma*.
- 4. Study of the disease mentioned in the syllabus (theory) with reference to the symptoms. Causal organisms and disease cycle.

M.Sc	Semester I Practical: Experiential learning, algae and fungi from			
	different habitats			
RJSPGBOTP101	Course Outcome:			
Practical I	1. Detailed study of type of algae and fungi systematic			
Plant Diversity-	position, thallus and reproductive structures			
Cryptogams I	2. Brief Study of the disease symptoms, causal organisms and			
(Algae and	disease cycle.			
Fungi)	Learning outcomes:			
	Understanding the diversity of classical botany and its future			
	application for commercial aspects			
	Detailed study of causative agent of plant diseases.			

Course Code	Practical Title	Credits
RJSPGBOTP102	Plant Diversity- Spermatophyta I (Gymnosperms	2
	and Angiosperms)	

- 1. Gymnosperms: A study of following types *Cordaites*(Fossil), *Auraucaria*, *Cupressus*, *Podocarpus*.
- 2. Angiosperms: Study of plan families as prescribed in theory
- 3. Identification of genus and species with the help of flora volumes. (In addition to the above-mentioned families, all families studied in undergraduate classes are included).

M.Sc	Semester I Practical			
RJSPGBOTP102	Course Outcomes: Field studies, habitat diversity, Skill			
Practical II	development			
Plant diversity -	1. Detailed study of gymnosperms and angiosperms families			
Spermatophyta	with their morphological peculiarities and economic			
1	importance			
(Gymnosperms	2. Identifying the genus and species of a plant with the help of			
and	Cooke's Flora.			
Angiosperms)	Learning outcomes:			
	> Understanding the past environment with diversity of			
	gymnosperms			
	> Learning of comprehensive angiosperms taxonomy with the			
	help morphological and its economic importance			
	Comparative study of the genus and species of a plant with			
	learning the diversity in morphological			

Course Code	Practical Title	Credits
RJSPGBOTP103	Plant Physiology	2

- 1. Enzyme kinetics: Determination of Km and Vmax of the enzyme amylase purified amylase)
- 2. Estimation of Lipase from germinating ground nut seeds
- 3. Separation of fatty acids by TLC
- 4. Estimation of fatty acids from different oil.
- 5. Estimation of total proteins from germinating seeds at different stages (students must prepare standard graph for protein)
- 6. Estimation of alpha amino acids from germinating seeds at different stages of germination (students must prepare standard graph for leucine)
- 7. Experiment using PGR

M.Sc	Semester I Practical Experiential learning, experimental design, data			
	analysis, interpretation.			
RJSPGBOTP103	Course Outcomes:			
Practical III	1. Detailed study of enzymes and its mechanism			
Plant	2. Chromatography application for fatty separation.			
Physiology	3. Detailed study of seed germination and its physiology.			
	Learning outcomes:			
	Understanding the Km and Vmax and activity of the enzymes			
	Assessment of titratable acid number, GOT and GPT in plant			
	> Understanding the chromatography technique and its			
	application			
	Understanding the absorption spectrum and colour filters			

Course Code	Practical Title				Credits
RJSPGSBOTSPI04	Cytogenetics,	Molecular	Biology	and	2
	Biotechnology				

- 1. Preparation of cytological stains, fixatives and pretreatment agents.
- 2. Squash preparation from pre-treated root tips of different plant material (colchicine/ Para dichlorobenzene/ Aesculin.
- 3. Smear preparation from any suitable plant material.
- 4. Giant chromosomes: Chironomous larva

M.Sc	Semester IPractical		
RJSPGBOTP104	Course Outcome:		
Practical <i>IV</i>	1. Study of preparation of cytological stains, fixatives and		
Current trends in	pre-treatment agents.		
plant science- II	2. Pre-treatment techniques. Arrested metaphase squash		
	preparation using different plant materials.		
	Learning outcomes:		
	Student will be able to prepare stains and fixatives		
	> They will be able to process material for observation of		
	chromosomes.		

References

- 1. Pandey, B. P. A Textbook of Botany- Angiosperms
- 2. Sutaria . A Textbook of Systematic Botany
- 3. Bob B Buchanan, William Grussem, Russel L Jones (2015) Biochemistry and Molecular Biology of Plants. John Wiley and Sons
- 4. Alexopoulos, C.J., Mims, C.W., Blackwell, M. (1996). Introductory Mycology, John Wiley and Sons (Asia), Singapore. 4th edition.
- 5. Maheshwari, P. An introduction to Embryology of Angiosperms by, McGraw Hill Book Co.
- 6. An introduction to Genetic analysis Griffith Freeman and Company (2000)
- 7. Ausubel, F., Brent, R., Kingston, R. E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1995). Short Protocols in Molecular Biology. John Wiley & Sons. 3rdedition.
- 8. Bajracharya D. (1999). Experiments in Plant Physiology-A Laboratory Manual.

 Narosa Publishing House, New Delhi.
- 9. Berg JM, Tymoczko JL and Stryer L (2011) biochemistry, W.H. Freeman and company.
- 10. Bhatnagar, S.P. & Moitra, A. (1996). Gymnosperms. New Age International (P) Ltd Publishers, New Delhi, India.
- 11. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms. Vikas Publication House Pvt. Ltd., New Delhi. 5th edition.
- 12. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.
- 13. Sunder Rajan, Bioinformatics, Himalaya Publications.
- 14. Vasistha, B. R. Book for Degree Students- Algae/Fungi/Bryophyta.
- 15. Vasistha, P. C. Book for Degree Students- Pteridophyta/Gymnospersm
- 16. Campbell A. M., Heyer L. J. (2006) Discovering Genomics, Proteomics and Bioinformatics. II Edition. Benjamin Cummings.
- 17. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV,

- Jackson RB (2008). Biology, Pearson Benjamin cummings, USA. Education Inc. 8th edition; 4-5.
- 18. Campbell, M.K. (2012) biochemistry, 7th edition, published by Cengage learning.
- 19. Campbell, P.N. and Smith A.D. (2011) Biochemistry illustrated. 4th edition, published by Churchill Livingstone.
- 20. Chrispeels, M.J. and Sadava, D.E. (2003). Plants, Genes and Agriculture. Jones &Bartlett Publishers.
- 21. Gangulee, Das and Dutta, College Botany Volume I and II latest edition.

 Central Education enterprises
- 22. Cooper GM and Hausman, RE (2009). The cell: a molecular approach. 5th edition. ASM Press and Sunderland, Washington DC, Sinauer associates, MA.
- 23. Smith, G. M. Cryptogamic Botany Volume I and II McGraw Hill.
- 24. Dawson, C. (2002). Practical research methods. UBS Publishers, New Delhi.
- 25. Dickison, W.C. (2000). Integrative Plant Anatomy. Harcourt Academic Press, USA.
- 26. Vijayan, K. and Tsou, C. H., DNA barcoding plants: taxonomy in a new perspective 2010. Current Science, 1530 1541.
- 27. Bhojwani and Bhatnagar, Embryology of Plants
- 28. Verma & Agrawal, Environmental Biology
- 29. Esau, K. (1977). Anatomy of Seed Plants. John Wiley & Sons, Inc., Delhi.
- 30. Rastogi, Fundamentals of Biostatics. Ane Books Pvt Ltd (2009)
- 31. Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics, John Wiley & sons, India. 8th edition.
- 32. Russel. Genetics Wesley Longman Inc publishers. (5th edition)
- 33. Winchester, Genetics
- 34. Ghosh, Z. and Bibekanand, M. (2008) Bioinformatics: Principles and Applications. Oxford University Press.
- 35. Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and

- Applications of recombinant DNA. ASM Press, Washington.
- 36. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis. W. H. Freeman and Co., U.S.A. 10th edition.
- 37. Harborne, J.B. (1973). Phytochemical Methods. John Wiley & Sons. New York.
- 38. Hardin, J., Becker, G., Skliensmith, L.J. (2012). Becker's World of the Cell, Pearson Education Inc. USA 8th edition.
- 39. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U. S.A. 4th edition.
- 40. Casida, Industrial Microbiology New Age International, New Delhi
- 41. Industrial Microbiology Mac Millan Publications, New Delhi
- 42. Westhead, (2002). Instant Notes on Bioinformatics, Taylor Francis Publications
- 43. Banerjee, P.K., Introduction to Bioinformatics, Chand Publication
- 44. Noggle and Fritz, Introduction to Plant Physiology, Prentice Hall Publisher (2002)
- 45. Jeffrey, C. (1982). An Introduction to *Plant Taxonomy*. Cambridge University Press, Cambridge.
- 46. Johri, B.M. I (1984). Embryology of Angiosperms, Springer-Verlag, Netherlands.
- 47. Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F. (2002). Plant Systematics-A Phylogenetic Approach. Sinauer Associates Inc., U.S.A. 2nd edition.
- 48. Karp, G. (2010). Cell Biology, John Wiley and Sons, USA 6th edition.
- 49. Klug, W.S., Cummings, M.R., Spencer, C.A. (2009). Concepts of Genetics. Benjamin Cummings. U.S.A. 9th edition.
- 50. Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics. Benjamin Cummings, U.S.A. 10th edition.
- 51. Kumar, H.D. (1999). Introductory Phycology. Affiliated East-West. Press Pvt. Ltd. Delhi.2nd edition.
- 52. Mauseth, J.D. (1988). Plant Anatomy. The Benjammin/Cummings Publisher, USA.
- 53. Nelson, D.L., Lehninger, A.L., Cox, M.M. (2008). LehningerPrinciples of

- Biochemistry.5th edition, W.H. Freeman and Company.
- 54. Parihar, N.S. (1991). An introduction to Embryophyta. Vol. I. Bryophyta. Central Book Depot, Allahabad.
- 55. Pevsner, J. (2009). Bioinformatics and Functional Genomics, II Edition. Wiley-Blackwell.
- 56. Kokate, Purohit and Gokhale .Pharmacognosy, Nirali Publications
- 57. Haberlandt, Physiological Plant Anatomy, Mac Millan and Company
- 58. Ramavat, K. Plant Biotechnology
- 59. Mukherji & Ghosh, Plant Physiology
- 60. Taiz and Zeiger, Plant Physiology, Sinauer Associatesinc. Publishers
- 61. Salisbury and Ross, Plant Physiology, CBS Publishers
- 62. Singh Gurucharan. Plant Systematics, Oxford and IBH Publ.
- 63. Dodds, Plant Tissue Culture.
- 64. Plummer, D.T. (1996). An Introduction to Practical Biochemistry. Tata McGraw-Hill Publishing Co. Ltd. New Delhi. 3rd edition.
- 65. Erdtman, G., Pollen Morphology and Plant Taxonomy Hafner Publ. Co., N.Y.
- 66. Verma and Joshi, Post-Harvest Technology, Indus Publication.
- 67. Plummer, David. Practical Biochemistry, McGraw Hill Publ.
- 68. Radford, A.E. (1986). Fundamentals of *Plant Systematics*. Harper and Row, New York.
- 69. Raghavan, V. (2000). Developmental Biology of Flowering plants, Springer, Netherlands.
- 70. Raven, P.H., Johnson, G.B., Losos, J.B., Singer, S.R., (2005). Biology. Tata McGraw Hill, Delhi, India.
- 71. Russell, P. J. (2010). iGenetics- A Molecular Approach. Benjamin Cummings, U.S.A. 3rd edition.
- 72. Ruzin, S.E. (1999). Plant Microtechnique and Microscopy, Oxford University Press, New York. U.S.A.
- 73. Sethi, I.K. and Walia, S.K. (2011). Text book of Fungi & Their Allies, MacMillan

- Publishers Pvt. Ltd., Delhi.
- 74. Shivanna, K.R. (2003). Pollen Biology and Biotechnology. Oxford and IBH Publishing Co. Pvt. Ltd. Delhi.
- 75. Singh, G. (2012). *Plant Systematics:* Theory and Practice. Oxford& IBH Pvt. Ltd., New Delhi. 3rdedition.
- 76. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons Inc., U.S.A. 5th edition.
- 77. Thompson & Thompson, Soil and Soil fertility.
- 78. Stewart, C.N. Jr. (2008). Plant Biotechnology & Genetics: Principles, Techniques and Applications. John Wiley & Sons Inc. U.S.A.
- 79. Taiz, L., Zeiger, E., Miller, I.M. and Murphy, A (2015). Plant Physiology and Development. Sinauer Associates Inc. USA. 6th edition.
- 80. Lawrence George Taxonomy of Vascular Plants, H M, Oxford and IBH Publ.
- 81. Tortora, G.J., Funke, B.R., Case, C.L. (2010). Microbiology: An Introduction, Pearson Benjamin Cummings, U.S.A. 10th edition.
- 82. Tymoczko, J.L., Berg, J.M., and Stryer, L. (2012) Biochemistry: A Short course, 2nd Ed, W.H. Freeman.
- 83. Vander-Poorteri, 2009. Introduction to Bryophytes. COP
- 84. Vashishta, P.C., Sinha, A.K., Kumar, A., (2010). Pteridophyta, S. Chand. Delhi, India.
- 85. Watson J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2007). Molecular Biology of the Gene, Pearson Benjamin Cummings, CSHL Press, New York, U.S.A. 6th edition.
- 86. Zar, J.H. (2012). Biostatistical Analysis. Pearson Publication, USA. 4th edition.

Scheme of Examinations

- 1. Internal Examination 40 marks various modes with different weightage (Presentation, seminar, mcq, quiz etc.)
- 2. One External (Semester End Examination) of 60 marks. Duration 2 ½ hours.
- 3. One Practical at the end of Semester consisting of Practical I 50 marks, Practical III 50 marks, Practical III 50 marks and Practical IV 50 marks separate passing in each practical
- 4. Minimum marks for passing Semester End Theory and Practical Exam is 40 %. Separate passing for Internal and Semester End examination.
- 5. For any KT examinations, there shall be ODD-ODD/EVEN-EVEN pattern followed.
- 6. Two short field excursions for habitat studies are compulsory. Field report submission is mandatory
- 7. Field work of not less than eight hours duration is equivalent to one period per week for a batch of 15students.
- 8. A candidate will be allowed to appear for the practical examinations if he/she submits a certified journal of Botany or a certificate from the Head of the department / Institute to the effect that the candidate has completed the practical course of M Sc Semester I Botany as per the minimum requirements.
- 9. In case of loss of journal, a candidate must produce a certificate from the Head of the department /Institute that the practical for the academic year were completed by the student. However, such a candidate will be allowed to appear for the practical examination but the marks allotted for the journal will not be granted.
- 10. HOD's decision, in consultation with the Principal, shall remain final and abiding to all.

Evaluation and Assessment

Evaluation (Theory): Total marks per course - 100.

CIA- 40 marks

CIA 1: Written test -20 marks

CIA 2: Written Test / Assignment / Field Trip/mini project/ & Report -

20 marks

Semester End Examination – 60 marks

Question paper covering all units

Evaluation of Practicals 200 marks (50 marks for each practical)

Course Semester End Examination in M Sc. Semester I

Question	KNOWLEDGE	UNDERSTANDING	APPLICATION	TOTAL
			and	MARKS-
			ANALYSES	Per unit
Unit 1	06	03	03	12
Unit 2	06	03	03	12
Unit 3	06	03	03	12
Unit 4	06	03	03	12
Short notes from	06	03	03	12
topics covering all				
the units				
-TOTAL-	30	15	15	60
Per objective				
% WEIGHTAGE	50	25	25	100%

Evaluation of Practicals 200 marks/Semester

SEMESTER I: (50 marks for each practical RJSPGBOTP101, RJSPGBOTP102, RJSPGBOTP103 & RJSPGBOTP104)

Continuous Evaluation of practical components which require adequate duration for completion of the task, observation and interpretation: 40%

Course end Practical Evaluation of skills of students in terms of skill, analysis, interpretation and conclusion.

ASSESSMENT OF BOTANY FIELD TRIP REPORT

Dept. of Botany Course Code	Date	_Roll No
Name of student:	UID No	
Marks /20 Place of visit		

Assessment Grid :Place one tick in each appropriate row. Overall mark should reflect the <u>positions of ticks in the individual rows</u>

(20)	Field Trip and Report	80-100% 17-20 Marks	60-80 <i>%</i> 13-16 Marks	40-60% 09-12 Marks	20-40% 05-08 Marks
30%	Organization of report	Introduction about the location, vegetation, Botanical Names, Family, Local name, Description using Botanical Term, reporting all the species seen, Handwritten or typed.	Few mistakes,	Many mistakes	Inadequate presentation
(06)	-	6	5	4	3
50%	Content	Excellent reporting of all the species observed in the field, ecological and morphological data,	Good reporting, species observed in the field but few of them missing in the list	Satisfactory, many species or relevant data missing from the report	Poor, inadequate and insufficient data or just a list of the species without any data.
		10/9	8	6	5
10% (02)	Conclusion	Conclusion based on self observation. Type of forest and vegetation	Good conclusion, comments not independent	Satisfactory, but insufficient	Poor,irrelevant conclusion
	Marks	2	2/1	1 /0.5	0.5
5% (01)	References	Proper references, in required format	Proper references but no format	Few references	Irrelevant references
	Marks	1	1	0.5	0
5% (01)	Attendance / participation	Attended and participated actively	Attended and participated	Infrequent Participation 0.5	No participation
	Marks	1	1	0.5	0

Comments: Name and Signature of Faculty

Project PG level Dept. of Course Code		Date_	
UIDNo	Roll No	Marks	/20
Name of student	;		
positions of ticks in the	t:	more than one set o	

Project work and report (Parameters)	Marks	80 – 100% Excellent	60 -80% Good	40 – 60% Satisfactory	20 – 40 % Average
Project work done	10	10/9	8/7	6/5	4 /3
Report writing and conclusions					
	10	10/9	8/7	6/5	4 /3