Hindi Vidya PracharSamiti's, Ramniranjan Jhunjhunwala College of Arts, Science & Commerce

(Empowered Autonomous College)

Hindi Vidya Prachar Samiti's

Ramniranjan Jhunjhunwala

College of Arts, Science &

Commerce

(Empowered Autonomous College)

Affiliated to

UNIVERSITY OF MUMBAI

Syllabus for the M.Sc.

Program: M.Sc. COMPUTER-SCIENCE

Program Code: RJSPCS
National Education Policy (NEP 2020)
Level 6.0

(CBCS 2024-2025)

Hindi Vidya PracharSamiti's, Ramniranjan Jhunjhunwala College of Arts, Science & Commerce

(Empowered Autonomous College)

THE PREAMBLE

Why Computer Science?

Education is the key to the development of any society. Role of higher education is crucial for securing the right kind of employment and also to pursue further studies in best available world class institutes elsewhere within and outside India. Quality education in general and higher education in particular deserves high priority to enable the young and future generation of students to acquire skill, training and knowledge in order to enhance their thinking, creativity, comprehension and application abilities and prepare them to compete, succeed and excel globally. Sustained initiatives are required to reform the present higher education system for improving and upgrading the academic resources and learning environments by raising the quality of teaching and standards of achievements in learning outcomes.

Why Computer Science at R J College?

The Computer Science department was established in the year 1999 with strength of 60

Students and M.Sc CS with strength of 40 Seats was introduced in the year 2001. Today the strength has reached 120 at UG level and 48 at PG level. The department offers both UG and PG programs in the subject of CS and is affiliated to, and recognized by the University of Mumbai. College facilitates a departmental library with nearly 1200+ books. There are 3 dedicated well-upgraded laborites for the CS department. With the management's extensive support, the department believes in "1 Student 1 PC policy" which helps students to rigorous practice and focus. Projects, hands on training sessions, guest lectures, laboratory experimentation, lecture-based learning, industry visits etc. motivate students to explore more in terms of applications of the subject. Under autonomy, the department has made curriculum more robust by incorporating skill-based learning and value-added courses that impart practical knowledge of the subject to the students. Department of CS (DBT), New Delhi has identified CS Department of R J College as DBT Star College Department which has further strengthened our hands in being able to provide hands-on training to the students to satisfy their curiosity.

Our Curriculum, Your Strength

This syllabus is an honest attempt to include following ideas, among other things, into practice:

- Bring a new approach to the syllabus, not a revision of the existing syllabus.
- Create a unique identity for MSC in Computer Science distinct from similar degrees in other related subjects.
- Offers focus on core Computer Science subjects.
- Incorporate advanced and most recent trends.
- Identify and nurture research temper among students.
- Offer provision for internship with industry at semester IV.
- Focus, as far as possible, only on open source software.

This syllabus for the semester I and semester II have initiated steps to meet these goals. By extending the syllabus to semester III and semester IV, it is assumed that these goals will be met to a larger extent. In order to give an impetus to research among students, one of the courses in the semester - I give an overview on how to do research in Computer Science. In a nutshell, the core philosophy of the syllabus is to - (i) Give strong foundation on core Computer Science subjects (ii) expose the student to emerging trends in a gradual and incremental way (iii) create a research temper among students in the whole process (v) Prepare student community for the demands of ICT industry. We hope that the student and teaching community will appreciate the thrust, direction and treatment given to the courses in the syllabus. We sincerely believe that a student who takes up this course will be a better fit for industry as he or she will have a strong foundation on fundamentals and exposure to advanced and emerging trends. We earnestly believe that by focusing on student driven research, learning will be more interesting and stimulating.

PROGRAM OUTCOMES OF GENERAL POSTGRADUATE DEGREE PROGRAMS

Students of all Postgraduate degree program at the time of graduation will be benefited and will be able to:

Critical Thinking

Comprehend the matter they come across and be capable to take a sound viewpoint about things which will highlight their intellectual acumen as well as enable them to look at the world through multiple lenses.

Effective communication

Listen, speak, read and write. They should communicate properly by conveying their thoughts. They will use technology for communication. Will be able to network with people with all available channels. They will be developing communication skills in English, Hindi and a local language would be an added advantage.

Social Interaction

Respect each other and should be able to resolve conflicts and help in reaching amicable solutions. They should be able to work in diverse teams. They should be able to distinguish When and what is socially acceptable.

Responsible citizen

Contribute to Nation development through social service. Being empathetic and Sympathetic to fellow beings.

Honesty and Integrity, Ethics

Recognize different values and systems and respect them. In decision making moral values should be given prime importance.

Environmental and Sustainability

Environmental issues would be considered and problem solving with sustainable development would be chosen.

LifeLong learning

Enjoy learning in every situation.

Program Specific Outcome M.Sc. Program with Computer Science

M.Sc. Computer Science course allows the candidates to learn technology-oriented knowledge and ability to develop creative solutions. An ability to critically analyze a problem and to design, implement, and evaluate a computing solution that meets requirements. An ability to work effectively in small groups on medium scale computing projects. The program provides the students with knowledge, general competence, and analytical skills on an advanced level, needed in academics, industry.

PSO1:	Ability to be technology-oriented with the knowledge and ability to develop creative solutions, and better understand the effects of future developments of computer systems and technology on people and society. Enrich the knowledge in the areas like Artificial Intelligence, M/C and Deep Learning, Paradigm of Programming language, Design and Analysis of Algorithms, computing subjects, Research methodologies.
PSO2:	Students understand all dimensions of the concepts of software application and projects. Students understand the computer subjects with demonstration of all programming and theoretical concepts. Developed in-house applications in terms of projects. Interact with IT experts & amp; knowledge by IT visits. Get industrial exposure through the "On Job Training" in the IT industry. To make them employable according to current demand of IT Industry and responsible citizen.

Credit Structure for M.Sc. Semester-I as per NEP 2020 To be implemented from the academic year 2024-2025.

Papers	Number of Papers	Credits	Total Credits
Major Subject theory	3	3 * 2 = 6 2 * 1 = 2	8
Major Subject Practical	3	2 * 3 = 6	6
Elective1 Trends in cloud computing Practical	1 + 1 (P)	4 2 + 2	4
Elective 2 Cryptography & Cryptanalysis Practical	1+1 (P)	4 2 + 2	4
Research Methodology	1	4	4
Total Credits		22	22

Credit Structure for M.Sc. Semester-II as per NEP 2020 To be implemented from the academic year 2024-2025.

Papers	Number of Papers	Credits	Total Credits
Major Subject theory	3	3 * 2 = 6 2 * 1 = 2	8
Major Subject Practical	3	2 * 3	6
Elective1 Web 3.0 Technology Practical	1 + 1 (P)	4 2 + 2	4
Elective 2 Cyber Security & Risk assessment Practical	1+1 (P)	4 2 + 2	4
ОЈТ	1	4	4
Total Credits		22	22

DISTRIBUTION OF TOPICS AND CREDITS

M.Sc. COMPUTER-SCIENCE SEMESTER I

Course Code	Unit	Topic Headings	Credits	L/Week
RJSPCS101	Paper T	Paper Title: Applied Machine and deep Learning		
	I	The Fundamentals of Machine Learning		1
	II	Supervised and Unsupervised Learning	3	1
	III	Fundamentals of Deep Learning		1

Course Code	Topic Headings	Credits
RJSPCSP101	Supervised, Unsupervised Models, Training Models	2

Course Code	Unit	Topic Headings	Credits	L/Week
RJSPCS102	Paper Title: Statistical Tools for data science			
	I	Introduction to Data Science		1
	II	Probability, Probability Distributions	3	1
	III	Hypothesis Testing		1

Course Code	Topic Headings	Credits
RJSPCSP102	Probability, Probability – Distributions, Histogram	2

Course Code	Unit	Topic Headings	Credits	L/Week
RJSPCS103	Paper T	itle : Algorithms for optimization		
	I	Introduction to Optimization Process & Order Methods	2	1
	II	Sampling Plans, Uncertainty , Discrete & Expression Optimization		

Course Code	Topic Headings	Credits
RJSPCSP103	Order Methods, Sampling and Surrogate Models, Optimization	2
	and Uncertainty	

Elective Course 1

Course Code	Unit	Topic Headings	Credits	L/Week	
RJSPCS104A	Paper T	Paper Title : Trends in Cloud Computing			
		Basic Concepts & Techniques and API for Cloud Application Development	2	1	
		Cloud Service Delivery Environment & DevOps and Containers in Cloud & Azure		1	

Course Code	Topic Headings	Credits
RJSPCSP104A	Basic Cloud Application Development, Cloud Service	2
	Delivery Environment and API, DevOps and Containers in Cloud,	
	Azure & GCP Essentials.	

Elective Course 2

Course Code	Unit	Topic Headings	Credits	L/Week
RJSPCS104B	Paper Title :	Cryptography and Cryptanalysis		
	I	Classic Cryptography Techniques		1
	II	Advanced Encryption, Integrity, &	2	1
		Authentication		

Course Code	Topic Headings	Credits
RJSPCSP104B	Classic Cryptography Techniques, Advanced Encryption,	2
	Public-Key Cryptography, Key Management	

Course Code	Unit	Topic Headings	Credits	L/Week
RJSPCS105	Paper T	Title: Research Methodology		
	I	Introduction to Research		1
	II	Formulation of research problem	4	1
	III	Research Paper Writing		1
	IV	Presentation of selected project proposal		1

M.Sc. COMPUTER-SCIENCE SEMESTER II

Course Code	Unit	Topic Headings	Credits	L/Week		
RJSPCS201	Paper T	Paper Title : Advanced Deep Learning				
	I	Neural Network for Deep Learning		1		
	II	Convolutional and Recurrent Networks for	3	1		
		Deep Learning				
	III	Advanced Concepts for Deep Learning		1		

Course Code	Topic Headings	Credits
RJSPCSP201	Training Models in Deep Learning(ANN,CNN,RNN)	2

Course Code	Unit	Topic Headings	Credits	L/Week
RJSPCS202	Paper Title: Embedded and IoT Technology			
	I	Embedded System Basics & Introduction to		1
		IOT	3	
	II	IoT Building Blocks, Sensors, IoT Gateway &		1
		IOT Protocol Stack		
	III	IoT Cloud and Fog Computing, IoT Security &		1
		Social IOT		

Course Code	Topic Headings	Credits
RJSPCSP202	Embedded Electronic Systems, Overview of MSP 430, Digital	2
	Input, Output, Displays, Analog Input/output & Communications.	

Course Code	Unit	Topic Headings	Credits	L/Week
RJSPCS203	Paper T	Title: Web Mining		
	I	Introduction to WebMining, Opinion Mining		1
		and Web Usage Mining	2	
	II	Social Network & Link Analysis, Webpage		1
		crawlers and usage mining		

Course Code	Topic Headings	Credits
RJSPCSP203	Web Scrapping, Opinion Mining and Web Usage Mining,	2
	Social Network & Link Analysis, Webpage crawlers and	
	usage mining.	

Elective Course 1

Course Code	Unit	Topic Headings	Credits	L/Week		
RJSPCS204A	Paper T	Paper Title: Web 3.0 Technology				
	I	Introduction to Web3 Technologies,Smart		1		
		Contracts & Ethereum	2			
	II	Ethereum, Hyperledger &		1		
		Tokenization, Solidity Programming				

Course Code	Topic Headings	Credits
RJSPCSP204A	Smart Contracts & Ethereum, Solidity Programming	2

Elective Course 2

Course Code	Unit	Topic Headings	Credits	L/Week	
RJSPCS204B	SPCS204B Paper Title: Cyber Security & Risk assessment				
	I	Introduction to Penetration Testing and		1	
		Reconnaissance	2		
	II	Vulnerabilities and Advanced Attacks		1	

Course Code	Topic Headings	Credits
RJSPCSP204B	Penetration Testing and Reconnaissance, Vulnerabilities and	2
	Advanced Attacks, Web and Cloud Exploitations,	
	Exploiting System Vulnerabilities.	

Course Code	Unit	Topic Headings		gs	Credits	L/Week
RJSPCS105	Paper T	itle : OJT		4		

SEMESTER I (THEORY)		Cr
Paper-I: Applied Machine and Deep Learning Paper Code: RJSPCS101	30	3
UNIT I	10	
THE FUNDAMENTALS OF MACHINE LEARNING		
Introduction: What is Machine Learning? Why use Machine Learning? Types of Machine Learning, Supervised Learning, Unsupervised Learning & Reinforcement Learning. Challenges of Machine Learning, Testing and Validation A First Application: Classification, MNIST Dataset, Performance Measures, Confusion Matrix, Precision and Recall, Precision/Recall Tradeoff, The ROC Curve, Multiclass Classification, Error Analysis.		
UNIT II		
SUPERVISED AND UNSUPERVISED LEARNING		
1 Linear Models: Regression, Linear SVM Classification, Soft Margin Classification, Nonlinear SVM Classification, Polynomial Kernel, Gaussian RBF Kernel, SVM Regression. Tree Based Models: Decision Trees, Training and Visualizing a Decision Tree, Making Predictions, The CART Training Algorithm, Gini Impurity vs Entropy, Regularization Hyperparameters.		
2 Distance Based Models: Nearest Neighbors Classification; Partitional Algorithm: K-means, K-Medoid; Hierarchical Algorithm: Agglomerative (AGNES); Divisive; Probabilistic Models		
UNIT III	10	
FUNDAMENTALS OF DEEP LEARNING		

Fundamentals of Deep Learning

What is Deep Learning? Need Deep Learning? Introduction to Artificial Neural Network (ANN), Core components of neural networks, Multi-Layer Perceptron (MLP), Activation functions, Sigmoid, Rectified Linear Unit (ReLU), Introduction to Tensors and Operations, Tensorflow framework.

Suggested References:

- 1. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems by AurélienGéron, Second Edition, O'reilly 2019
- 2. Deep Learning with Python by François Chollet Published by Manning 2018
- 3. Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto, Second Edition 2014
- 4. Introduction to Machine with Python A Guide for Data Scientists by Andreas C. Müller & Sarah Guido O'reilly 2016
- 5. Artificial Neural Networks with TensorFlow 2 ANN Architecture Machine Learning Projects Poornachandra Sarang by Apress 2021.

COURSE OUTCOMES (COs) M. Sc. COMPUTER SCIENCE

SEMESTER	:	I MAJOR (CORE) SUBJECT
TITLE OF THE SUBJECT/COURSE	:	Applied Machine and Deep Learning
COURSE CODE	:	RJSPCS101
CREDITS	:	03
DURATION	:	30 LECTURES

LEA	LEARNING OBJECTIVES		
1	1 Understand core concepts of ML through implementations in python.		
2	Working with diverse toolkits and packages useful for developing projects in ML.		
3	Implement and understand deep learning and ANNs useful for industry.		

COURSE	On completing the course, the student will be able to:	PSO	BLOOMS
OUTCOME	JTCOME		LEVEL
NUMBER			
CO1	Understand a wide variety of learning algorithms.	1	BT Level III, IV Apply draw conclusions
CO2	Understand how to evaluate models generated from data.	1, 2	BT level III, IV and V
CO3	Apply the algorithms to a real problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the models.	1,2	BT level III, IV and V
CO4	Developing projects in machine learning for industrial applications.	1, 2	BT level III, IV and V
CO5	Understanding and implementing algorithms and techniques of Machine Learning useful in the field of Data Science, Image Processing, NLP, etc.	1, 2	BT level III, IV and V

Pr	actical-I: Applied Machine and Deep Learning	Paper Code: RJSPCSP101 Credits: 02	
1	Implement Linear Regression (Diabetes Dataset)		
2	Implement Logistic Regression (Iris Datase	et)	
3	Implements Multinomial Logistic Regression (Iris Dataset)		
4	Implement SVM classifier (Iris Dataset)		
5	Train and fine-tune a Decision Tree for the Moons Dataset		
6	Train an SVM regressor on the California Housing Dataset.		
7	Implement Batch Gradient Descent with early stopping for Softmax Regression		
8	Implement MLP for classification of handwritten digits (MNIST Dataset)		
9	Classification of images of clothing using Tensorflow (Fashion MNIST dataset)		
10	Implement Regression to predict fuel efficiency using Tensorflow (Auto MPG dataset)		

COURSE OUTCOMES (COs) M.Sc. COMPUTER SCIENCE

SEMESTER	•	I MAJOR (CORE) SUBJECT PRACTICAL
TITLE OF THE SUBJECT/COURSE	:	Applied Machine and Deep Learning
COURSE CODE	:	RJSPCSP101
CREDITS	:	02
DURATION	:	40 HOUR

LEAR	LEARNING OBJECTIVES			
1	Understand the features of machine learning to apply on real world problems.			
2	Characterize the machine learning algorithms as supervised learning and unsupervised learning and			
	Apply and analyze the various algorithms of supervised and unsupervised learning.			
3	Analyze the concept of neural networks for learning.			

COURSE OUTCOME NUMBER	On completing the course, the student will be able to:	PSO Addressed	BLOOMS LEVEL
CO1	Understand the mathematical and statistical perspectives of machine learning algorithms through python programming.	1	BT Level III, IV Apply draw conclusions
CO2	Design and evaluate the supervised and unsupervised models through python in built functions.	1, 2	BT level III, IV and V Apply, analyze, and evaluate
CO3	Evaluate the machine learning models pre-processed through various feature engineering algorithms by python programming.	1,2	BT level III, IV and V Apply, analyze and evaluate
CO4	Understand the basic concepts of deep neural network model and design the same.	1,2	BT level III, IV and V Apply, analyze and evaluate

	SEMESTER I (THEORY)			Cr
]	Paper-II: Statistical Tools for Data Science Paper Code: RJSPCS102		30	3
	UNIT	I	10	
	INTRODUCTION TO	DATA SCIENCE		
1	The Field of Data Science – The Various Data Science Disciplines, Difference between Analysis and Analytics, Business Analytics, Data Analytics, Life Cycle Of Data Science, Popular Data Science Techniques.			
2	The Basic Probability Formula, Comp Events and Their Complements. Probability – Combinatorics	outing Expected Values, Frequency,		
	Permutations, Simple Operations with Factorials, Solving Variations with Repetition, Solving Variations without Repetition.			
	UNIT	TI .	10	
	PROBABILITY			
1	1 Combinations, Symmetry of Combinations, Solving Combinations with Separate Sample Spaces. Probability - Bayesian Inference Sets and Events, The Conditional Probability, The Law of Total Probability			
2	2 Discrete Distributions: The Uniform Distribution, The Bernoull Distribution, The Binomial Distribution, The Poisson Distribution Continuous Distributions: The Normal Distribution, The Students' The Distribution			
	UNIT III			
	STATIST	ICS		

1	Statistics:	
1	Population and Sample, Types of Data, Levels of Measurement,	
	Categorical Variables, Numerical Variables -Frequency Distribution	
	Table	
	Mean, median and mode, Skewness, Variance, Standard Deviation and	
	Coefficient of Variation Covariance	

Correlation Coefficient, The Standard Normal Distribution, Central
Limit Theorem, Standard error, Estimators and Estimates Confidence
Intervals
Hypothesis Testing
Null vs Alternative Hypothesis,
Rejection Region and Significance Level, Type I Error and Type II Error
Test for the Mean p-value.

Suggested References:

- 1. Peter Bruce, Andrew Bruce, "Practical Statistics for Data Science", O'Reilly, 2017.
- 2. James D. Miller, "Statistics for Data Science", Packt, 2017.
- 3. Dr. J. Ravichandran, "Probability and Statistics for Engineers", 2010.
- 4. Hadley Wickham, Garrett Grolemund, "R for data Science: Import, Tidy, Transform, Visualize and Model Data".
- 5. Prabhanjan Tatter, Tony Ojeda, Sean Patrik Murphy, Benjamin Bengfort, Abhijit Dasgupta, "Practical Data Science Cookbook", 2ndEdition, Packt, 2014

COURSE OUTCOMES (COs) M. Sc. COMPUTER SCIENCE

SEMESTER	•	I MAJOR (CORE) SUBJECT
TITLE OF THE SUBJECT/COURSE	:	Statistical tools for Data Science
COURSE CODE	:	RJSPCS102
CREDITS	:	03
DURATION	:	30 LECTURES

LEARNING OBJECTIVES		
1	The Students will get in-depth knowledge of data science related Mathematical and statistical	
	computing concepts.	

COURSE	On completing the course, the student will be able to:	PSO	BLOOMS
OUTCOME		Addressed	LEVEL
NUMBER			
CO1	Apply important algorithmic design paradigms	1	BT Level III, IV
	and methods of analysis.		Apply draw
			conclusions
CO2	To introduce mathematical statistical computing with practical Approach.	1, 2	BT level III, IV and V

Prac scier	etical-2: Statistical methods for data nce	Paper Code: RJSPCSP102 Credits: 02	
1	Exploratory data analysis.		
2	Exploring Binary and categorical data		
3	Data and sampling distributions.		
4	Solving Combinations with Separate Sample Spaces		
5	Bayesian Inference		
6	Probability Distributions		
7	Descriptive Statistics		
8	Inferential Statistics		
9.	Test for the mean of Independent Samples and dependent Samples		
10	Hypothesis Testing		

COURSE OUTCOMES (COs) M.Sc. COMPUTER SCIENCE

SEMESTER	:	I MAJOR (CORE) SUBJECT PRACTICAL
TITLE OF THE SUBJECT/COURSE	:	Statistical methods for data science
COURSE CODE	:	RJSPCSP102
CREDITS	:	02
DURATION	:	40 HOUR

LEAR	LEARNING OBJECTIVES		
1	Design, develop & deploy real-world applications in the field of data science.		
2	Apply quantitative modeling and data analysis techniques to the solution of real world business problems, communicate findings, and effectively present results using data visualization techniques		
3	Demonstrate knowledge of statistical data analysis techniques utilized in business decision making.		
4	Apply principles of Data Science to the analysis of business problems.		

COURSE	On completing the course, the student will be able to:	PSO	BLOOMS LEVEL
OUTCOM		Addressed	
E			
NUMBER			
CO1	Develop in depth understanding of the key technologies in	1	BT Level III, IV
	data science and statistics.		Apply draw
			conclusions
CO2	Practice problem analysis and decision-making.	1, 2	BT level III, IV and
			V Apply, analyze,
			and evaluate
CO3	Gain practical, hands-on experience with statistics, python	1,2	BT level III, IV and
	programming languages and data tools.		V Apply, analyze
			and evaluate

	SEMESTER I (THEORY)	L	Cr
Pa	per-III: Algorithm for Optimization Paper Code: RJSPCS103	20	2
	UNIT I	10	
	Introduction to Optimization Process & Order Methods		
1	Introduction: Basic Optimization Problem, Constraints, Critical Points, Conditions for Local Minima, Contour Plots.		
	Bracketing: Unimodality, Fibonacci Search, Golden Section Search		
	First-Order Methods: Gradient Descent, Conjugate Gradient, Adagrad, RMSProp, Adadelta, Adam		
	Second-Order Methods: Newton's Method		
	UNIT II	10	
	Sampling Plans, Uncertainty , Discrete & Expression Optimization		
1	Sampling Plans: Full Factorial, Random Sampling, Uniform Projection Plans, Stratified Sampling, Space-Filling Metrics.		
	Optimization under Uncertainty: Uncertainty, Set-Based Uncertainty, Probabilistic Uncertainty.		
Uncertainty Propagation: Sampling Methods			
Discrete Optimization: Dynamic Programming			
	Expression Optimization : Grammars, Grammatical Evolution		

Suggested References:

- 1. Decision Making Under Uncertainty: Theory and Application by Mykel J. Kochenderfer MIT Lincoln Laboratory Series 2015.
- 2. Introduction to Algorithms, By Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein 3Ed. (International Edition) (MIT Press) 2009.
- 3. Introduction to Algorithms, Third Edition, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, PHI Learning Pvt. Ltd-New Delhi (2009).
- 4. Researching Information Systems and Computing, Brinoy J Oates, Sage Publications India Pvt Ltd (2006).
- 5. Algorithms, SanjoyDasgupta, Christos H. Papadimitriou, UmeshVazirani, McGraw-Hill Higher Education (2006)

- 6. Grokking Algorithms: An illustrated guide for programmers and other curious people, MEAP, AdityaBhargava, http://www.manning.com/bhargava
- 7. Research Methodology, Methods and Techniques, Kothari, C.R.,1985, third edition, New Age International (2014).
- 8. Basic of Qualitative Research (3rd Edition), Juliet Corbin & Anselm Strauss:, Sage Publications (2008).

COURSE OUTCOMES (COs) M. Sc. COMPUTER SCIENCE

SEMESTER	:	I MAJOR (CORE) SUBJECT
TITLE OF THE SUBJECT/COURSE	:	Algorithm for Optimization
COURSE CODE	:	RJSPCS103
CREDITS	:	02
DURATION	:	20 LECTURES

LEAR	LEARNING OBJECTIVES		
1	Optimization with a focus on practical algorithms for the design of engineering systems.		
2	Exposure to multivariable calculus, linear algebra, and probability concepts.		
3	Learn a wide variety of optimization topics, introducing the underlying mathematical problem		
	formulations and the algorithms for solving them.		

COURSE	On completing the course, the student will be able to:	PSO	BLOOMS
OUTCOME		Addressed	LEVEL
NUMBER			
CO1	Students will be able to effectively implement	1	BT Level III, IV
	optimization techniques to the existing algorithm to		Apply draw
	improve its performance.		conclusions
CO2	Students will be able to work in the areas of Machine	1, 2	BT level III, IV
	Learning and Data Sciences Algorithms.		and V

	Practical-03 Algorithm for Optimization	Paper Code: RJSPCSP103	
1	Implement Contour Plots I.		
2	Implement Contour Plots II.		
3	Implement Fibonacci and Golden section	search.	
4	Implement Quadratic Fit Search.		
5	Implement Gradient descent.		
6	Implement quasi-Newton methods to find the local maxima.		
7	Implement the Adagrad method with application.		
8	Implement the RMSprop and Adadelta optimizer.		
9	Implement radial basis functions using surrogate modelling.		
10	Apply Random Forest in surrogate Model.		
11	Implement Gaussian Process and its application.		
12	Path finding using Ant Colony Optimization with an application.		

COURSE OUTCOMES (COs) M.Sc. COMPUTER SCIENCE

SEMESTER	•	I MAJOR (CORE) SUBJECT PRACTICAL
TITLE OF THE SUBJECT/COURSE	:	Algorithm for Optimization
COURSE CODE	:	RJSPCSP103
CREDITS	:	02
DURATION	:	40 HOUR

LEARNING OBJECTIVES			
1	To understand Julia tool to explore different algorithms.		
2	To explore search algorithms.		
3	To implement order methods		
4	To implement surrogate & modeling methods		
5	To implement optimization & uncertainty methods		

COURSE OUTCOM E NUMBER	On completing the course, the student will be able to:	PSO Addressed	BLOOMS LEVEL
CO1	Explore different plots.	1	BT Level III, IV Apply draw conclusions
CO2	Test different searching algorithms.	1, 2	BT level III, IV and V Apply, analyze, and evaluate
CO3	Understand results of order methods	1,2	BT level III, IV and V Apply, analyze and evaluate
CO4	Understand results of surrogate & modeling methods	1,2	BT level III, IV and V Apply, analyze and evaluate
CO5	Understand results of optimization & uncertainty methods	1, 2	BT level III, IV and V Apply, analyze, and evaluate

	SEMESTER I (THEORY)	L	C r		
Paj	Paper-IV: Trends in Cloud Computing Paper Code: RJSPCS104A				
	UNIT I	10			
	asic Concepts & Techniques and API for Cloud Application evelopment				
1	Fundamentals of Cloud Application Development: Business case for implementing cloud application, Requirements collection for cloud application development, Cloud service models and deployment models, Open challenges in Cloud Computing: Cloud interoperability and standards, scalability and fault tolerance, security, trust, and privacy				
2	Application Development framework: Accessing the clouds: Web application vs Cloud Application, Frameworks: Model View Controller (MVC). Cloud platforms in Industry – Google AppEngine, Microsoft Azure, Openshift, CloudFoundry				
3	Sessions and API: Storing objects in the Cloud, Session management, Working with third party APIs: Overview of interconnectivity in Cloud ecosystems. Facebook API, Twitter API, Google API.				
	UNIT II				
	Cloud Service Delivery Environment & DevOps and Containers in Cloud & Azure				
1	Managing the data in the Cloud: Securing data in the cloud, ACL, OAuth, OpenID, XACML, securing data for transport in the cloud, scalability of applications and cloud services.				
2					
3	Azure essentials: Azure Compute and Storage, Azure Database and Networking, Monitoring and Managing Azure Solutions, GCP Compute and Storage, GCP Networking and Security, Google App Engine (PaaS)				

Suggested References:

- 1. JJ GEEWAX, Google Cloud Platform in Action, Manning Publications Co, 2018
- 2. Haishi Bai, Dan Stolts, Santiago Fernández Muñoz, Exam Ref 70-535 Architecting Microsoft Azure Solutions, Pearson Education, 2018
- 3. Dr. Kumar Saurabh, Cloud Computing, 4ed: Architecting Next-Gen Transformation Paradigms, Wiley, 2017

COURSE OUTCOMES (COs) M. Sc. COMPUTER SCIENCE

SEMESTER	:	I ELECTIVE SUBJECT THEORY
TITLE OF THE SUBJECT/COURSE	:	Trends in Cloud Computing
COURSE CODE	:	RJSPCS104A
CREDITS	:	02
DURATION	:	20 LECTURES

LEARNING OBJECTIVES			
1	Design, develop & deploy real-world applications in the cloud computing platforms		
2	Demonstrate the ability to access the various cloud platforms		
3	Describe the standardization process of the cloud platform and various API's used in Cloud		
	Computing		
4	Describe the methods for managing the data in the cloud		

COURSE	On completing the course, the student will be able to:	PSO	BLOOMS
OUTCOME		Addressed	LEVEL
NUMBER			
CO1	Learners will be able to develop and launch applications in the cloud environment	1	BT Level III, IV Apply draw conclusions
CO2	Explore various frameworks and APIs that are used for developing cloud-based applications	1, 2	BT level III, IV and V

Practical-4 Trends in Cloud Computing		Paper Code: RJSPCSP104A	
		Credits: 02	
1	Using the software like / API / Tools JDK Apache tomcat server 7.0/8.0,GoogleAppI framework design and develop Web applic	Engine API, Servlets, Struts, Spring	
2	Installing and configuring the required platform for Google App Engine.		
3	Studying the features of the GAE PaaS mo	del.	
4	Creating and running Web applications (Guest book, MVC) on localhost and deploying the same in Google App Engine		
5	Developing an ASP.NET based web applied	cation on the Azure platform	
6	Creating an application in Dropbox to store data securely. Develop a source code using Dropbox API for updating and retrieving files.		
7	Installing Cloud Foundry in localhost and exploring CF commands.		
8	Cloud application development using IBM Bluemix Cloud.		
9	Installing and Configuring Dockers in loca a Docker Platform.	lhost and running multiple images on	
10	Configuring and deploying VMs/Dockers	using Chef/Puppet Automation tool	

COURSE OUTCOMES (COs) M.Sc. COMPUTER SCIENCE

SEMESTER	•	I ELECTIVE SUBJECT PRACTICAL
TITLE OF THE SUBJECT/COURSE	:	Trends in Cloud Computing
COURSE CODE	:	RJSPCSP104A
CREDITS	:	02
DURATION	:	40 HOUR

LEAI	LEARNING OBJECTIVES		
1	Identify the technical foundations of cloud systems architectures.		
2	Analyze the problems and solutions to cloud application problems.		
3	Apply principles of best practice in cloud application design and management.		
4	Identify and define technical challenges for cloud applications and assess their importance.		

COURSE OUTCOM E NUMBER	On completing the course, the student will be able to:	PSO Addressed	BLOOMS LEVEL
CO1	Understand the importance of virtualization in distributed computing and how this has enabled the development of Cloud Computing.	1	BT Level III, IV Apply draw conclusions
CO2	Analyze the performance of Cloud Computing.	1, 2	BT level III, IV and V Apply, analyze, and evaluate
CO3	Understand the concept of Cloud Security.	1,2	BT level III, IV and V Apply, analyze and evaluate
CO4	Learn the Concept of Cloud Infrastructure Model.	1,2	BT level III, IV and V Apply, analyze and evaluate
CO5	Able to develop MVC and Web API .	1, 2	BT level III, IV and V Apply, analyze, and evaluate

	SEMESTER I (THEORY)			Cr
	Paper - IV :Cryptography and Cryptanalysis Paper Code: RJSPCS104B		20	2
	UNIT I			
	Classic Cryptography	y Techniques		
1	1 Cryptosystems and Basic Cryptographic Tools: Introduction, Secret- key Cryptosystems, Public-key Cryptosystems, Block and Stream Ciphers, Hybrid Cryptography, Message Integrity, Message Authentication Codes, Signature Schemes, Nonrepudiation, Certificates, Hash Functions, Cryptographic Protocols, Security			
2	2 Classical Cryptography: Introduction to Some Simple Cryptosystems, Shift Cipher, Substitution Cipher, Affine Cipher, Vigenere Cipher, Hill Cipher, Permutation Cipher, Stream Ciphers, Cryptanalysis, Cryptanalysis of the Affine Cipher, Cryptanalysis of the Substitution Cipher, Cryptanalysis of the Vigenere Cipher, Cryptanalysis of the Hill Cipher, Cryptanalysis of the LFSR Stream Cipher.			
	UNIT II			
Advanced Encryption, Integrity, and Authentication				
1	RSA Cryptosystem and Factoring: Public-key Cryptography, Number Theory-Euclidean Algorithm, Chinese Remainder Theorem, Other Useful Facts, RSA Cryptosystem, Primality Testing, Square Roots Modulo n, Factoring Algorithms, Rabin Cryptosystem, Semantic Security of RSA			
2	Hash Functions and Message Authentication: Hash Functions and Data Integrity, Security of Hash Functions, Message Authentication Codes, Unconditionally Secure MACs			
	Signature Schemes: Introduction to R	SA Signature Scheme, Security		
	Requirements, ElGamal Signature Scheme, Variants of the ElGamal Signature Scheme, Full Domain Hash, Certificates, Signing and			
	Encrypting			

Suggested References:

- 1. Cryptography Theory and Practice Douglas R. Stinson, , Fourth Edition, CRC Press, 2019
- 2. Applied Cryptanalysis, Breaking Ciphers in Real World, John Wiley, 2015
- 3. Implementing Cryptography, Shannon W. Bray, John Wiley, 2020
- 4. Algorithmic Cryptanalysis, Antoine Joux, CRC Press, 2017
- 5. Modern Cryptography: Applied Mathematics for• Encryption and Information Security, William Easttom, Springer, 2021

COURSE OUTCOMES (COs) M. Sc. COMPUTER SCIENCE

SEMESTER	:	I ELECTIVE SUBJECT THEORY
TITLE OF THE SUBJECT/COURSE	:	Cryptography and Cryptanalysis
COURSE CODE	:	RJSPCS104B
CREDITS	:	02
DURATION	:	20 LECTURES

LEAR	NING OBJECTIVES	
1	Insights related to cryptography and cryptanalysis.	
2	Analyze and use methods for cryptography.	
3	Implement some of the prominent techniques for public-key cryptosystems and digital signature	
	schemes.	
4	Understand the notions of public-key encryption and digital signatures and sketch their formation	
	security definitions.	

COURSE	On completing the course, the student will be able to:	PSO	BLOOMS
OUTCOME		Addressed	LEVEL
NUMBER			
CO1	To develop the foundation for the study of cryptography and its use in security.	1	BT Level III, IV Apply draw conclusions
CO2	To understand the application of Number Theory and Algebra for the design of cryptographic algorithms	1, 2	BT level III, IV and V
CO3	To understand the role of cryptography in communication over an insecure channel.	1, 2	BT level III, IV and V

Practical-4 Cryptography and Cryptanalysis		Paper Code: RJSPCSP104B Credits:02	
1	Program to implement password salting and hashing to create secure passwords.		
2	Program to implement various classica Cipher	al ciphers-Substitution Cipher, Vigenère	
3	Program to implement various classica	al ciphers-Substitution Cipher,Affine cipher	
4	Program to demonstrate cryptanalysis	(e.g., breaking Caesar or Vigener Cipher)	
5	Program to implement AES algorithm for file encryption and decryption		
6	Program to implement various block cipher modes		
7	Program to implement Steganography for hiding messages inside the image file.		
8	Program to implement HMAC for signing messages.		
9	Program to implement Sending Secure Messages Over IP Networks		
10	Program to implement RSA encryption/decryption		
11	Program to implement (i) El-Gamal C	ryptosystem	
12	Program to implement (i) Elliptic Curve Cryptography		

COURSE OUTCOMES (COs) M.Sc. COMPUTER SCIENCE

SEMESTER	:	I ELECTIVE SUBJECT PRACTICAL
TITLE OF THE SUBJECT/COURSE	:	Cryptography and Cryptanalysis
COURSE CODE	:	RJSPCSP104B
CREDITS	:	02
DURATION	:	40 HOUR

LEAR	LEARNING OBJECTIVES		
1	To implement different methods of security.		
2	To implement different encryption & decryption techniques.		
3	To implement steganography technique.		

COURSE	On completing the course, the student will be able to:	PSO	BLOOMS LEVEL
OUTCOM		Addressed	
E			
NUMBER			
CO1	Understanding & testing of security methods.	1	BT Level III, IV
			Apply draw
			conclusions
CO2	Implement & test different encryption & decryption techniques.	1, 2	BT level III, IV and V Apply, analyze, and evaluate
CO3	To verify results of steganography technique.	1,2	BT level III, IV and
			V Apply, analyze and
			evaluate

	SEMESTER I (THEORY)	L	Cr
Pa	per - V :Research Methodology Paper Code: RJSPCS105	60	4
	UNIT I	15	
	Introduction to Research		
1	Introduction to Research: Meaning and Definition of Research, Purpose of Research, Scientific Method, Positivism and post-positivist approach to research, Types of Research, Beginning Stages of Research Process: Problem definition, Qualitative research, Quantitative Research, primary and Secondary data research. Business Research: Role of Business Research, Information Systems and Knowledge Management, Theory Building, Organization ethics and Issues.		
	UNIT II	15	
	Research Methods and Formulation of research		
	problem		
1	Research Methods and Data Collection: Survey research, communicating with respondents, Observation methods, Descriptive and experimental Research type, Inductive and deductive approach, Action research, research steps. Formulation of research problem: problem selection, literature review, formulation of hypothesis. Variables: dependent, independent and Intervening variables.		
	UNIT III	15	
	Data collection and sampling		

1	Data collection and sampling: Probability sampling, Non probability sampling, Survey method, contact method, questioner. Selection of project domain: Publication ethics, Tools and evaluation. Selection of tentative project area and process of literature survey — Literature survey components and procedures Basic components of a research paper — procedures and processes, Journal types, Scopus, web of science, Science Citation Index, H-index, Google citations.		
	UNIT IV	15	
	Research Paper Writing & Presentation		
1	Research Paper Writing:		
	Title selection, paragraph writing, report design, conclusion formation, diagrams and equations, citations, plagiarism, paper format, scopus indexed journals, predatory journals, digital object identifier/ISBN number and publication, research ethics. Presentation of selected project proposal: Oral presentation. Preparation of a report on the selected project proposal, Attending special invited lectures, practical orientation in searching and collecting literature through library, online tools, presenting a seminar on selected project.		

References:

- 1. William G. Zikmund, B J Babin, J.C. Carr, Atanu Adhikari, M. Griffin, "Business Research Methods", Cengage, 8e, 2016.
- 2. Professionals, Second Edition, New York: IEEE Press, 2002.
- 3. Handbook of Qualitative Research, Norman K. Denzin, Yvonna S. Lincoln

COURSE OUTCOMES (COs) M. Sc. COMPUTER SCIENCE

SEMESTER	:	Ι
TITLE OF THE SUBJECT/COURSE	:	Research Methodology
COURSE CODE	:	RJSPCS105
CREDITS	:	04
DURATION	:	60 LECTURES

LE	LEARNING OBJECTIVES				
1		To understand the research methodologies such as survey and field research, questionnaire design, content analysis, analysis of existing data, focus group, individual and group observation (including participatory observation) etc.			

COURSE	On completing the course, the student will be able to:	PSO	BLOOMS
OUTCOME		Addressed	LEVEL
NUMBER			
CO1	To understand the research methodologies such as survey and field research, questionnaire design, content analysis, analysis of existing data, focus group, individual and group observation (including participatory observation) etc.	,	BT Level III, IV Apply draw conclusions
CO2	To be able to understand the latest theories of doing research.	1, 2	BT level III, IV and V
CO3	To understand and explore the research techniques used for solving any real world or innovative problem.	1, 2	BT level III, IV and V

SEMESTER II (THEORY)			Cr
Paper-I: Advanced Deep Learning Paper Code: RJSPCS201		30	3
UNIT I		10	
	Neural Network for Deep Learning	10	
1	Optimization and Neural Network: Review of Neural Network fundamentals, the problem of Learning, Implementing single Neuron-Linear and Logistic Regression, Deep Learning: Fundamentals, Deep Learning Applications, Popular open-source libraries for deep learning		
2	Feed-Forward Networks: Networks architecture and Matrix notation, Overfitting, Multiclass Classification with Feed-Forward Neural Networks, Estimating Memory requirement of Models		
	UNIT II	10	
	Convolutional and Recurrent Networks for Deep Learning		
1	Regularization: Complex Network and Overfitting,		
	Regularization and related concepts, Hyperparameter tuning		
	Convolutional Neural Networks: Kernels and Filters, Building		
	Blocks of CNN, Inception Network, Transfer Learning		
2	Recurrent Neural Network: Notation and Idea of recurrent neural networks, RNN Topologies, backpropagation through time, vanishing and exploding gradients		
	UNIT III	10	
	Advanced Concepts for Deep Learning		
1	Autoencoders: Introduction, Network Design, Regularization in Autoencoders, Denoising autoencoders, Feed-Forward Autoencoders, spare and Contractive autoencoders Unsupervised Feature Learning: Hopfield networks and Boltzmann machines, restricted Boltzmann machine, Deep belief networks		
2	Generative Adversarial Networks (GANs): Introduction, training algorithms, Conditional GANs, applications, Deep convolutional generative adversarial networks Deep Learning for Language Modelling and Speech Recognition		

Suggested References:

TEXTBOOKS:

- 1. Python Deep Learning, Valentino Zocca, Packt Publication, 2017
- 2. Applied Deep Learning, with TensorFlow 2, Umberto Michelucci, Apress, 2022
- 3. Pro Deep Learning with TensorFlow, Santanu Pattanayak, Apress, 2017

REFERENCE BOOKS:

- 1. Advanced Deep Learning with Keras, Rowel Atienza, Packt Publication, 2018
- 2. Python Deep Learning Cookbook, Indra den Bakker, Packt Publication, 2017
- 3. Deep Learning with Keras, Antonio Gulli, Packt Publication, 2017

SEMESTER	:	I MAJOR (CORE) SUBJECT THEORY
TITLE OF THE SUBJECT/COURSE	:	Advanced Deep Learning
COURSE CODE	:	RJSPCS201
CREDITS	:	03
DURATION	:	30 LECTURES

LEA	LEARNING OBJECTIVES			
1 Understand the context and use of neural networks and deep learning.				
	Understand the tools and libraries for deep learning.			
2	Have a working knowledge of neural networks and deep learning.			
3	Explore the parameters for neural networks.			
4	Identify emerging applications of deep learning.			

COURSE	On completing the course, the student will be able to:	PSO	BLOOMS
OUTCOME		Addressed	LEVEL
NUMBER			
CO1	Knowledge of implementing neural network	1	BT Level III, IV
	architectures for deep learning.		Apply draw
			conclusions
CO2	Skill to implement regularization and optimization of	1, 2	BT level III, IV
	neural network		and V
CO3	Ability to implement advanced networks like CNN,	1	BT Level III, IV
	RNN and GAN		Apply draw
			conclusions
CO4	Implement deep learning for advanced applications like	1, 2	BT level III, IV
	object identification, speech, and language		and V

	Practical-I: Advanced Deep Learning	Paper Code: RJSPCSP201 Credits:02
		Credits:02
1	Implement Feed-forward Neural Network an optimizers and compare the results.	d train the network with different
2	Write a Program to implement regularization	to prevent the model from overfitting
3	Implement deep learning for recognizing cla previously unseen images and assign them to	
4	Implement deep learning for the Prediction of MNIST data set)	of the autoencoder from the test data (e.g.
5	Implement Convolutional Neural Network fo	or Digit Recognition on the MNIST Dataset
6	Write a program to implement Transfer Lear the	ning on the suitable dataset (e.g. classify
	cats versus dogs dataset from Kaggle).	
7	Write a program for the Implementation of a generating synthetic shapes (like digits)	Generative Adversarial Network for
8	Write a program to implement a simple form a. E.g. (4-to-1 RNN) to show that the quantit	
	on the values of the previous day	
	b. LSTM for sentiment analysis on datasets l	
9	Write a program for object detection from th	
10	Write a program for object detection using pro	e-trained models to use object detection.

SEMESTER	:	I MAJOR (CORE) SUBJECT PRACTICAL
TITLE OF THE SUBJECT/COURSE	:	Advanced Deep Learning
COURSE CODE	:	RJSPCSP201
CREDITS	:	02
DURATION	:	40 HOUR

LEAR	LEARNING OBJECTIVES			
1	To introduce the idea of artificial neural networks and their architecture.			
2	To introduce techniques used for training artificial neural networks.			
3	To enable design of an artificial neural network for classification.			
4	To enable design and deployment of deep learning models for machine learning problems.			

COURSE OUTCOME NUMBER	On completing the course, the student will be able to:	PSO Addressed	BLOOMS LEVEL
CO1	Understand the main fundamentals that drive Deep Learning.	1	BT Level III, IV Apply draw conclusions
CO2	Be able to build, train and apply fully connected deep neural networks.	1, 2	BT level III, IV and V Apply, analyze, and evaluate
CO3	Know how to implement efficient CNN or RNN.	1,2	BT level III, IV and V Apply, analyze and evaluate
CO4	Understand the key features in a neural network's architecture	1,2	BT level III, IV and V Apply, analyze and evaluate

SEMESTER II (THEORY)			L	Cr
	Paper-II: Embedded and IoT Technology Paper Code: RJSPCS202		30	3
	UNIT I		10	
	Embedded System Basics & Int	troduction to IOT		
1	Introduction to Embedded Systems: What & where are Embedded systems? Approaches to ES, Anatomy of a Typical Small Microcontroller Instruments MSP430: The Outside View – Pin-out, The inside view – Functional Block Diagram.			
2	Basic Electronics: Semiconductors, Capacitors, CMOS, MOSFET, FPGA, Rel	· · · · · · · · · · · · · · · · · · ·	,	
	Types of Communication: Microcontrollers, UART Communications SPI-peripherals interface, I2C communication, Wireless Sensor Network (WSN)			
	Introduction IoT: Evolution of the IoT concept, vision and definition of IoT, basic characteristics of IoT, distinguish the IoT from other related technologies, IoT enablers, IoT architectures, pros and cons of IoT, IoT architecture concepts for specific IoT applications.			
	UNIT II		10	
	IoT Building Blocks, Sensors, Io Protocol Stack	· ·		
1	IoT Building Blocks -Hardware and Software: The basic IoT building blocks, smart thing components and capabilities, basics of IoT gateway Cloud, and analytics Sensing Principles and Wireless Sensor Network: Sensor fundamentals and classification of sensors, physical principles of some common sensors, basics of WSNs, WSN architecture and types, layer-level functionality of WSN protocol stack.			

2	IoT Gateway: IoT architecture domains, IoT gateway architecture, IoT gateway functionalities, IoT gateway selection criteria, IoT gateway and edge computing, edge computing-based solution for specific IoT applications	
	IoT Protocol Stack: Mapping of IoT protocols to layered IoT architecture, functionality of infrastructure, service discovery, and application layer protocols of IoT protocol stack	

UNIT III	10	
IoT Cloud and Fog Computing, IoT Security & Social IOT		

1	IoT Cloud and Fog Computing: Components of IoT Cloud architecture, usage of application domains of IoT Cloud platforms, layered architecture of Fog computing, distinguish Fog computing from other related terms	
	IoT Applications: Main applications of IoT, Implementation details of various IoT application domains.	
2	IoT Security: Security constraints in IoT systems, security requirements of IoT systems, IoT attacks, security threats at each layer of IoT architecture, design secure IoT system for specific application	
	Social IoT: Nature of social relationships among IoT Devices, functionality of different components of social IoT architecture, social aspects of smart devices in IoT applications.	

Suggested References:

- 1. MSP430 Microcontroller Basics by John Davies.
- 2. Introduction to Embedded Systems Cyber physical systems Approach Edward Ashford Lee &SanjitArunkumarSeshia Second Edition MIT Press 2017
- 3. Enabling the Internet of Things Fundamentals, Design and Applications by Muhammad Azhar Iqbal, Sajjad Hussain, Huanlai Xing, Muhammad Ali Imran Wiley Pub.1stEdition 2021
- 4. Introduction Embedded Systems by K.V. Shibu Second Edition McGraw Hills-2017
- 5. Build your own IoT Platform Develop a Fully Flexible and Scalable Internet of Things Platform in 24 Hours by Anand Tamboli 2019 Apress

SEMESTER	•	I MAJOR (CORE) SUBJECT THEORY
TITLE OF THE SUBJECT/COURSE	:	Embedded and IoT Technology
COURSE CODE	:	RJSPCS202
CREDITS	:	03
DURATION	:	30 LECTURES

LEAR	LEARNING OBJECTIVES		
1	The course is designed to enable students to understand and implement IoT in industry.		
2	Design and executive projects in IoT with Automatic Identification and Data Capture.		
3	The course is designed to enable students to understand and implement IoT in industry.		

COURSE	On completing the course, the student will be able to:	PSO	BLOOMS
OUTCOME		Addressed	LEVEL
NUMBER			
CO1	Understand basic components and functionalities of Embedded System including its hardware.	1	BT Level III, IV Apply draw conclusions
CO2	Effectively achieve collaboration of various technologies in IoT and enable the same using software programming like Python, Embedded C etc.	1, 2	BT level III, IV and V
CO3	Understand case studies in IoT and replicate the same for more detailed analysis of the IoT development.	1	BT Level III, IV Apply draw conclusions

Prac	ctical 2: Embedded and IoT Technology	Paper Code: RJSPCSP202 Credits: 02			
	Note: - The following set of practical's should be implemented in CodeVision AVR, Proteus8, Cisco Packet Tracer, Keli V5, Python				
Lin	k: -Python: https://www.python.org/down	loads/			
Arc	luino UNO, Raspberry Pi				
Cod	deVisionAVR: https://www.codevision.be/				
Pro	teus8: https://www.labcenter.com/downlo	pads/			
Cis	co Packet Tracer: https://www.netacad.com	m/courses/packet-tracer			
	i V5: https://www.keil.com/download/				
1	Basic Embedded Practicals Using Arduin	o UNO : Push button, LED,Buzor			
2	Embedded Practicals Using Arduino U	NO & Components - I: 7-segment, LCD,			
3	Embedded Practicals Using Arduino U	NO & Components - I : Keypad, Servo Motor			
4	Embedded Practicals Using Arduino Ul Ultrasonic sensor	NO & Sensors I : IR Proxymity sensor,			
5	Embedded Practicals Using Arduino U	NO & Sensors II : DHT Sensor			
6	IOT Practicals using Raspberry Pi - I :Using OS (LINUX commands)				
	IOT Practicals using Raspberry Pi - II:	Using Components (Stepper Motor)			
7					
8	Practicals using Cisco Packet Tracer I				
9.	Practicals using Cisco Packet Tracer II				
10	Practicals using Cisco Packet Tracer III				
11	Practicals using simulator Proteus8 & C	Code vision AVR I			

12	Practicals using simulator Proteus8 & Code vision AVR II
13	Practicals using simulator Proteus8 & Code vision AVR III

SEMESTER	:	I MAJOR (CORE) SUBJECT PRACTICAL
TITLE OF THE SUBJECT/COURSE	:	Advanced Embedded System
COURSE CODE	:	RJSPCSP202
CREDITS	:	02
DURATION	:	40 HOUR

LEA	LEARNING OBJECTIVES		
1	To implement small scale Embedded & IOT systems.		
2	To Understand communication between devices.		
3	To understand automation in systems using sensors.		

COURSE	On completing the course, the student will be able to:	PSO	BLOOMS LEVEL
OUTCOME		Addressed	
NUMBER			
CO1	Understand small scale embedded & IOT systems.	1	BT Level III, IV Apply draw conclusions
CO2	Understanding of device communications.	1, 2	BT level III, IV and V Apply, analyze, and evaluate
CO3	Understanding of different sensors, motions etc	1,2	BT level III, IV and V Apply, analyze and evaluate

	SEMESTER II (THEORY)			Cr
Pa	per-III: Web Mining	Paper Code: RJSPCS203	20	2
	UNIT I		10	
	Introduction to W	Veb Mining		
1	Web Mining Date Mining Difference Mining Sequential Potterns on			
	UNIT II	Ţ	10	
1	Link Analysis, Scrapy using pyth Network Analysis, Co-Citation and B HITS, Basic Crawler Algorithm, In Crawlers, Focused Crawlers, Topica Conflicts, Data modelling and webpa analysis of web usage patterns, Recom- filtering, query log mining	ibliographic Coupling, PageRank, mplementation Issues, Universal al Crawlers, Crawler Ethics and age usage mining., Discovery and		

Suggested References:

- 1. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data by Bing Liu (Springer Publications) 2017 publication
- 2. Data Mining: Concepts and Techniques, Second Edition Jiawei Han, Micheline Kamber (Elsevier Publications),2017
- 3. Web Mining: Applications and Techniques by Anthony Scime, 2010
- 4. Mining the Web: Discovering Knowledge from Hypertext Data by Soumen Chakrabarti 2010

SEMESTER	:	I MAJOR (CORE) SUBJECT THEORY
TITLE OF THE SUBJECT/COURSE	:	Web Mining
COURSE CODE	:	RJSPCS203
CREDITS	:	02
DURATION	:	20 LECTURES

LEA	LEARNING OBJECTIVES		
1	To Understand the difference between Web Mining and Data mining.		
2	To Understand the Basics and Needs of Web Mining.		
3	To Understand Web-based Data.		
4	To Understand Opinion Mining and Sentiment classification.		

COURSE OUTCOME	On completing the course, the student will be able to:	PSO Addressed	BLOOMS LEVEL
NUMBER CO1	Develop deep understanding of mining techniques exclusively for the Internet.	1	BT Level III, IV Apply draw conclusions
CO2	Understand and develop analytics for social media data.	1, 2	BT level III, IV and V
CO3	Design and implementation of various web analytical tool to understand complex unstructured data on the Internet for aiding individuals and Businesses to grow their business.	1	BT Level III, IV Apply draw conclusions

I	Practical- 3: Web Mining	Paper Code: RJSPCSP203	
1	Scrape an online E-Commerce Site for Data. 1. Extract product data from Amazon - be it any product and put these details in the MySQL database. One can use pipeline. Like 1 pipeline to process the scraped data and other to put data in the databaseand since Amazon has some restrictions on scraping of data, ask them to work on small set of requests otherwise proxies and all would have to be used. 2. Scrape the details like color, dimensions, material etc. Or customer ratings by features.		
2	Scrape an online Social Media Site for Data twitter	. Use python to scrape information from	
3	Page Rank for link analysis using python Create a small set of pages namely page1, page2, page3 and page4 apply random walk on the same		
4	Perform Spam Classifier.		
5	Demonstrate Text Mining and Webpage Prothe web pages (Local/Online).	e-processing using meta information from	
6	Apriori Algorithm implementation in case s	tudy.	
7	Develop a basic crawler for the web search	for user defined keywords.	
8	Develop a focused crawler for local search.		
9	Develop a programme for deep search implementation to detect plagiarism in documents online.		
10	Sentiment analysis for reviews by customer	s and visualize the same.	

SEMESTER	:	I MAJOR (CORE) SUBJECT PRACTICAL
TITLE OF THE SUBJECT/COURSE	:	Web Mining
COURSE CODE	:	RJSPCSP203
CREDITS	:	02
DURATION	:	40 HOUR

LEAF	LEARNING OBJECTIVES		
1	To understand what is Web Mining, Web Scraping and Web Crawling		
2	To understand and perform Link analysis and Web page preprocessing		
3	To understand workin with deep search		
4	To understand Sentimental analysis		

COURSE	On completing the course, the student will be able to:	PSO	BLOOMS LEVEL
OUTCOME NUMBER		Addressed	
CO1	Understand how to scrape different online Websites	1	BT Level III, IV Apply draw conclusions
CO2	Perform Link analysis and Preprocessing of web pages	1, 2	BT level III, IV and V Apply, analyze, and evaluate
CO3	Perform deep search and detect plagiarism in documents online	1,2	BT level III, IV and V Apply, analyze and evaluate
CO4	Understand and perform Sentiment analysis	1,2	BT level III, IV and V Apply, analyze and evaluate

	SEMESTER II (THEORY)			Cr
Pa	Paper-III: Web3 Technologies Paper Code: RJSPCS204A			2
	UNIT	I	10	
	Introduction to Web3 Technologies	s,Smart Contracts & Ethereum		
1	Web3: Introduction to web3, Web3	Evolution, Web3 Tecnologies.		
2	Blockchain: Growth of blockchain to history of blockchain and Bitcoin, Bland blockchain, Decentralization decentralization, Routes to decent ecosystem decentralization, The condesign, Classification, Algorithms, Bitcoin: Overview, Cryptographic Mining, Bitcoin network, Wallets, Bitcoin, Advanced protocols, Bitcoin Bitcoin.	ockchain, Consensus, CAP theorem using blockchain, Methods of atralization, Blockchain and full sensus problem, Analysis and keys, Transactions, Blockchain Bitcoin payments, Innovation in investment, and buying and selling		
3 Smart Contracts: History, Definition Ricardian contracts, Smart contract templates, Deploying smart contracts, The DAO				
	Ethereum: Overview, Ethereum net ecosystem, The Ethereum Virtual Blocks and Blockchain, Wallets and and miners, APIs, tools, and Programming languages.	Machine (EVM), Smart contracts, client software, Nodes		
	UNIT	II	10	
	Ethereum, Hyperledger, Tokenizati gramming Ethereum Development Environ Components of a private network,	ment: Overview, Test networks, starting up the private network,		
	mining on the private network, MetaMask and Remix IDE to deploy	_		
2	Hyperledger: Projects under Hyarchitecture, Hyperledger Fabric, Harchitecture, environment.	yperledger Sawtooth, Setting up a		
	Tokenization: Tokenization on a bloof tokenization, Token offerings, Tofinance, DeFi, Building an ERC-20 to	ken standards, Trading and		

3	Introduction to Solidity Programming: Layout of a Solidity Source	
	File, Structure of a Contract, Types, Units, and Globally Available	
	Variables, Input Parameters and Output Parameters, Control Structures,	
	Function Calls, Creating Contracts via new, Order of Evaluation of	
	Expressions, Assignment, Scoping and Declarations, Error handling:	
	Assert, Require, Revert and Exceptions.	

Suggested References:

- 1. Mastering Blockchain: A deep dive into distributed ledgers, consensus protocols, smart contracts, DApps, cryptocurrencies, Ethereum, and more, 3rd Edition 2020
- 2. Andreas M. Antonopoulos, Dr. Gavin wood "Mastering Ethereum" O"Reilly Media Inc, 2019
- 3. Ritesh Modi, "Solidity Programming Essentials: A Beginner"s Guide to Build Smart Contracts for Ethereum and BlockChain", Packt Publishing.

SEMESTER	:	I ELECTIVE SUBJECT THEORY
TITLE OF THE SUBJECT/COURSE	:	Web3 Technologies
COURSE CODE	:	RJSPCS204A
CREDITS	:	02
DURATION	:	20 LECTURES

LEA	LEARNING OBJECTIVES		
1	Understand blockchain technology.		
2	Develop blockchain-based solutions and write smart contracts using Hyperledger Fabric and		
	Ethereum frameworks.		
3	Build and deploy blockchain applications for on-premise and cloud-based architecture.		

COURSE	On completing the course, the student will be able to:	PSO	BLOOMS
OUTCOME		Addressed	LEVEL
NUMBER			
CO1	To cover the technical aspects of crypto currencies, blockchain technologies, and distributed consensus.	1	BT Level III, IV Apply draw conclusions
CO2	To familiarize potential applications for Bitcoin-like crypto currencies	1, 2	BT level III, IV and V
CO3	To Basics of smart contracts, decentralized apps, and decentralized anonymous organizations (DAOs)	1	BT Level III, IV Apply draw conclusions

Prac	etical 4 A: Web3 Technologies	Paper Code: RJSPCSP204A Credits: 02	
1	Install and understand Docker container, Node.js, Java and Hyperledger Fabric, Ethereum and perform necessary software installation on local machine/create instance on Cloud to run.		
2	Create and deploy a block chain networ	k using Hyperledger Fabric SDK for Java.	
3	Interact with a block chain network. Ex block chain network by creating an app	ecute transactions and requests against a to test the network and its rules.	
4	Deploy an asset-transfer app using block chain. Learn app development within a Hyperledger Fabric network.		
5	Use block chain to track fitness club rewards Build a web app that uses Hyperledger Fabric to track and trace member rewards.		
6	Car auction network: A Hello World example with Hyperledger Fabric Node SDK and IBM Block chain Starter Plan. Use Hyperledger Fabric to invoke chaincode while storing results and data in the starter plan.		
7	Develop an IoT asset tracking app using Block chain. Use an IoT asset tracking device to improve a supply chain by using Block chain, IoT devices, and Node-RED.		
8	Create a global finance block chain application with IBM Block chain Platform Extension for VS Code. Develop a Node.js smart contract and web app for a Global Finance with block chain use case.		
9	Develop a voting application using Hyperledger and Ethereum. Build a decentralized app that combines Ethereum's Web3 and Solidity smart contracts with Hyperledger's hosting Fabric and Chaincode EVM		

SEMESTER	:	I ELECTIVE SUBJECT PRACTICAL
TITLE OF THE SUBJECT/COURSE	:	Web3 Technologies
COURSE CODE	:	RJSPCSP204A
CREDITS	:	02
DURATION	:	40 HOUR

L	LEARNING OBJECTIVES		
1		Basic understanding of Blockchain Technology	
2		Knowledge of Cryptocurrencies, especially Ethereum	

COURSE	On completing the course, the student will be able to:	PSO	BLOOMS LEVEL
OUTCOME		Addressed	
NUMBER			
CO1	design Smart Contracts	1	BT Level III, IV
			Apply draw
			conclusions
CO2	Understand of decentralized applications	1, 2	BT level III, IV and
			V Apply,
			analyze, and
			evaluate

	SEMESTER II (L	Cr	
	Paper-IV: Cyber Security and Risk Assessment Paper Code: RJSPCS204B			2
	UNIT I			
	Introduction to Penetration Te	sting and Reconnaissance		
1	Goal-based penetration testing: Introduction to Penetration Testing, Different types of threat actors, Conceptual overview of security testing, Common pitfalls of vulnerability assessments, penetration testing, and red team exercises, Objective-based penetration testing, The testing methodology Kali Linux & Red Team Tactics,			
2	Open-source Intelligence and Reconnaissance: Basic Principles of Reconnaissance, Scraping, Google Hacking Database, creating custom wordlist for cracking password Active Reconnaissance of External and Internal Networks: Stealth scanning techniques, DNS reconnaissance, and route mapping, Employing comprehensive reconnaissance applications,			
	UNIT II			
	Vulnerabilities and Advanced Attacks			
2	Vulnerability Assessment: Local and Vulnerability scanning with Nmap scanners, Threat modeling. Advanced Social Engineering and Methodology, Physical attacks at a confessalating an attack using DNS redirect Exploiting Web-based applications: Browser exploitation Framework Metasploit Exploitation: Metasploit multiple targets using MSF Privilege Escalation: Escalation metaluser to system administrator	d Physical Security: Common nsole, Social Engineering Toolkit,, etion, Web app Hacking methodology, framework, exploiting single and		

Suggested References:

Mastering Kali Linux for Advanced Penetration Testing Fourth Edition, Vijay Kumar Velu, Packt, 2022 Learn Kali Linux 2019: Perform Powerful Penetration Testing Using Kali Linux, Metasploit, Nessus, Nmap, And Wireshark, Glen D. Singh, Packt, 2019

Hands-on Penetration Testing for Web Applications: Run Web Security Testing on ModernApplications Using Nmap, Burp Suite and Wireshark, Richa Gupta, BPB, 2021

Advanced Penetration Testing, Wil Allsopp, Wiley, 2017

William G. Zikmund, B J Babin, J.C. Carr, Atanu Adhikari, M. Griffin, "Business Research Methods", Cengage, 8e, 2016.

Professionals, Second Edition, New York: IEEE Press, 2002.

Handbook of Qualitative Research, Norman K. Denzin, Yvonna S. Lincoln

SEMESTER	:	I ELECTIVE SUBJECT THEORY
TITLE OF THE SUBJECT/COURSE	:	Cyber Security and Risk Assesment
COURSE CODE	:	RJSPCS204B
CREDITS	:	02
DURATION	:	20 LECTURES

LEAR	NING OBJECTIVES
1	Develop skills to use kali Linux for penetration testing
2	Use open-source tools for Reconnaissance
3	Perform vulnerability assessment using popular tools
4	Learn about advanced ways to exploit web apps and cloud security

COURSE	On completing the course, the student will be able to:	PSO	BLOOMS
OUTCOME		Addressed	LEVEL
NUMBER			
CO1	Learn about an advanced concept related to penetration testing.	1	BT Level III, IV Apply draw conclusions
CO2	Use of Kali Linux in performing penetration tests against networks, systems, and applications	1, 2	BT level III, IV and V
CO3	Understand ways to protect system and digital assets.	1	BT Level III, IV Apply draw conclusions

Practical 4B: Cyber Security and Risk Assessment Paper Code: RJSPCSP204 Credit: 02		Paper Code: RJSPCSP204B Credit: 02	
1	Exploring and building a verification lab	for penetration testing (Kali Linux)	
2	Use of open-source intelligence and passive reconnaissance		
3	Practical on enumerating host, port, and service scanning		
4	Practical on vulnerability scanning and assessment		
5	Practical on use of Social Engineering Toolkit		
6	Practical on Wireless and Bluetooth attacks		
7	Practical on Exploiting Web-based applications		
8	Practical on using Metasploit Framework for exploitation.		
9	Practical on injecting Code in Data Driven Applications: SQL Injection		
10	Wireless Network threats (sniff wifi hotspots, analyze strength, discover wireless access points)		

SEMESTER	:	I ELECTIVE SUBJECT PRACTICAL
TITLE OF THE SUBJECT/COURSE	:	Cyber Security and Risk Assessment
COURSE CODE	:	RJSPCSP204B
CREDITS	:	02
DURATION	:	40 HOUR

LEAR	RNING OBJECTIVES
1	To understand working with Kali Linux
2	To understand vulnerability and different attacks
3	To understand Exploitation of Web-based applications
4	To understand Wireless Network threats

COURSE OUTCOME NUMBER	On completing the course, the student will be able to:	PSO Addressed	BLOOMS LEVEL
CO1	Understand the working of Kali Linux	1	BT Level III, IV Apply draw conclusions
CO2	Understand different types of attacks and scan vulnerability	1, 2	BT level III, IV and V Apply, analyze, and evaluate
CO3	Understand Exploitation of Web-based applications	1,2	BT level III, IV and V Apply, analyze and evaluate
CO4	Understand different threats in Wireless Networks	1,2	BT level III, IV and V Apply, analyze and evaluate

Scheme of Examinations

- 1. Two Internals of 20 marks each. Duration 30 min for each.
- 2. One External (Semester End Examination) of 60 marks. Duration: 2.5 hours.
- 3. One Practical at the end of Semester consists of Groups and each group has 2 practicals each of 50 marks but passing combined out of 100.
- 4. Minimum marks for passing Semester End Theory and Practical Exam is 40 %.
- 5. Students must appear for at least one of the two Internal Tests to be eligible for the Semester End Examination.
- 6. For any KT examinations, there shall be ODD-ODD/EVEN-EVEN pattern followed.
- 7. A candidate will be allowed to appear for the practical examinations if he/she submits a certified journal of MSc Computer-Science or a certificate from the Head of the department / Institute to the effect that the candidate has completed the practical course of M.Sc. Computer-Science as per the minimum requirements.
- 8. In case of loss of journal, a candidate must produce a certificate from the Head of the department /Institute that the practicals for the academic year were completed by the student. However, such a candidate will be allowed to appear for the practical examination, but the marks allotted for the journal will not be granted.
- 9. HOD's decision, in consultation with the Principal, shall remain final and abiding to all

Evaluation (Theory): Total marks per course - 100.

CIA-40 marks

CIA 1: Written test -15 marks

CIA 2: Written Test / Assignment /mini project/

& Report -25 marks

Semester End Examination – 60 marks

Question paper covering all units

Evaluation of Practicals 100 marks/group (RJSPCSP101,RJSPCSP102, RJSPCSP201, RJSPCSP202)

Course Semester End Examination in Semester1 and II for Paper I to IV (RJSPCS101 To RJSPCS104, RJSPCS201 To RJSPCS204)

Question	KNOWLEDGE	UNDERSTANDIN G	APPLICATION and ANALYSI S	TOTAL MARKS- Per unit
Unit 1	07	02	03	12
Unit 2	07	02	03	12
Unit 3	07	02	03	12
Unit 4	07	02	03	12
Short notes from	07	02	03	12
topics covering all				
the units				
-TOTAL-	35	10	15	60
Per objective				
% WEIGHTAGE	58	17	25	100%

Evaluation of Practicals 100 marks /group (RJSPCSP101,RJSPCSP102, RJSPCSP201, RJSPCSP202)

Continuous Evaluation of components which require adequate duration for completion of the task, observation and interpretation: 25%

Course end Practical Evaluation of skills of students in terms of skill, analysis, interpretation and conclusion.

Dept.of	CourseCode	Date
	UIDNo	RollNo Marks
	/10 Name ofstudent:	

Assessment Grid :Place one tick in each appropriate row. Overall mark should reflect the positions of ticks in the individual rows. In boxes that have more than one set of marks, cancel out the marks that are not applicable and circle the correct marks.

Project work and report (Parameters)	Marks	80 – 100% Excellent	60 -80% Good	40 – 60% Satisfactory	20 – 40% Average
Project work done	10	10 / 9	8 / 7	6/5	4 /3

COMPUTER SCIENCE Mapping of the courses to employability / entrepreneurship / skill development

Class	Course Name	Course Code	Unit No. And topics focusing on Employability / Entrepreneurship / Skill development	Employability / Entrepreneurship / Skill development
MSC	Applied Machine and deep Learning	RJSPCS101	Employability Unit1: The Fundamentals of Machine Learning Unit2: Training Models Unit 3: Bagging and Boosting Unit 4: Fundamentals of Deep Learning	Employability in the field of M\L & researching
MSC	Statistical Tools for data science	RJSPCS102	Employability Unit 1: Business Analytics, Popular Data Science Technique Unit 2: Probability, Probability, Probability Unit 3: Discrete & Continuous Distributions Unit 4: Histogram, Histogram, Hypothesis Testing	Employability in the field of Data Scientist, data engineer
MSC	Algorithms for optimization	RJSPCS103	Employability Unit1: Introduction to Optimization Process Unit2: Order Methods Unit3: Sampling and Surrogate Models Unit4: Optimization and Uncertainty	Employability in the field of Algorithms & researching

MSC	Trends in Cloud computing	RJSPCS104A	Unit 1: Techniques for Cloud	Employability in the field of Cloud application and data management
MSC	Cryptography & Cryptanalysis	RJSPCS104B	Unit 1: Classic Cryptography Techniques Unit 2: Advanced Encryption, Integrity, and Authentication Unit 3: Public-Key Cryptography and Identity Verification Unit4: Key Management	Employability in the Security Management.
MSC	Research Methodology	RJSPCS105	Unit 2:Formulation of research	Employability in the Field of Research methodology.
MSC	Big Data	RJSPCS201		Employability in the Big data and data analytics

MSC	Embedded and IoT Technology RJSPCS202		Employability Unit 1: Embedded Electronic Systems & Microcontrollers, Instruments & Development Unit 2: Architecture of MSP430 processor, Functions, Interrupts & low power modes Unit 3: Digital Input, Output, Displays, Timers Unit 4 :Analog Input/output, Communication	Employability in the field of embedded & IOT system design	
MSC	Web Mining	RJSPCS203	Employability Unit 1:Introduction to WebMining Opinion Mining and Web Usage Mining Unit 2:Social Network & Link Analysis Webpage crawlers and usage mining	Employability in the field of social networking and mining	
MSC	Web 3.0 Technology	RJSPCS204A	Entrepreneurship Unit1: Introduction to Web3 Technologies Smart Contracts & Ethereum Unit 2: Serenity, Ethereum, Hyperledger & Tokenization Solidity Programming	Employability in the field of Blockchain Technology.	
	Cyber Security & Risk assessment	RJSPCS204B	 Introduction to Penetration Testing and Reconnaissance Vulnerabilities and Advanced Attacks 	Employability in the field of Cyber security	

	/20 Name ofstudent: _	
	UIDNo	RollNo Marks
Dept.of	CourseCode	Date
Project Post graduat	te level	
Name and Signature	e of Faculty . Mini	
Comments:		

Title of Assignment:

Assessment Grid :Place one tick in each appropriate row. Overall mark should reflect the positions of ticks in

the individual rows. In boxes that have more than one set of marks, cancel out the marks that are not applicable and circle the correctmarks.

Project work and report (Parameters	Marks	80 – 100% Excellent	60 -80% Good	40 – 60% Satisfactory	20 – 40% Average
Project work done	10	10 / 9	8 / 7	6/5	4 /3
Report writing and conclusions	10	10 / 9	8/7	6/5	4 /3