

Hindi Vidya Prachar Samiti's

# Ramniranjan Jhunjhunwala College

of Arts, Science & Commerce

(Empowered Autonomous College)

Affiliated to

**UNIVERSITY OF MUMBAI** 

Syllabus of Statistics Major for the T.Y.B.Sc. Semester- VI (under NEP)

**Program: B.Sc. STATISTICS** 

**Program Code: RJSUSTA** 

(REVISED in 2025-2026 in alignment with the NEP2020 facilitating the inter-and multidisciplinary learning and multiple entry and exit of the students)

(CBCS 2025-2026)

# T.Y.B.Sc. Semester VI Statistics DSC Syllabus

#### Preamble

The National Education Policy 2020 aims at imparting skill-based learning and caters to the multiple entry and exit facility for the students thus empowering them to acquire knowledge at their pace. In the three-year UG program, the student has two exit options. Students also have the option of choosing the Honors program of four years study in a given discipline and later converting it to a five-year integrated PG degree program. As an undergraduate student, he/she learns the core subject (Major), subject complementing the core subject (Minor), a course from another discipline (OEC or GEC), Vocational and Skill Enhancement course from the Major (VSEC). The remaining verticals under NEP 2020 are IKS (Indian Knowledge System), AEC (Ability Enhancement Course), VEC (Value Enhancement Course) and with progressive three years of UG, student also completes at different levels OJT (On Job Training), FP (Field Projects), CEP (Community Engagement Program), RP (Research Project) which helps him/her in understanding their roots, application of the knowledge for the benefit of self and the society. Vertical CC (Co-curricular activities and activities related to yoga and human well-being) helps in preparing youth with good character and interpersonal relationships.

# Credit Structure for B Sc Semester V as per NEP 2020 Implemented from the academic year 2025-2026 Course Code: RJDSCSTA

#### Semester VI Level 5.5 Major Statistics

| Courses                                                                  | Credits | Total<br>Credits | Course Code                                        |
|--------------------------------------------------------------------------|---------|------------------|----------------------------------------------------|
| Discipline Specific Core -I Distribution Theory and Stochastic Processes | 4       | 12               | RJDSCSTA361                                        |
| Discipline Specific Core -II Testing of Hypothesis                       | 4       |                  | RJDSCSTA362                                        |
| Discipline Specific Core -III Practical on DSC-I and DSC-II              | 4       |                  | Practicals related to DSC I and II<br>RJDSCSTAP361 |
| Discipline Specific Elective-I Elements of Actuarial Science             | 4       | 4                | RJDSESTA361                                        |
| Discipline Specific Elective-<br>II<br>Introduction to Six Sigma         |         |                  | RJDSESTA362                                        |
| Vocational Skill Course<br>(VSC)<br>Foundations of Python<br>Programming | 2       | 2                | RJVSCSTAP361                                       |
| On Job Training (OJT)                                                    | 4       | 4                | RJOJTSTA361                                        |
| Total Credits                                                            | 22      | 22               |                                                    |

<sup>\*</sup>As per University Grid

# T.Y.B.Sc. Semester VI Statistics DSC Syllabus

#### DISTRIBUTION OF TOPICS AND CREDITS

#### T.Y.B.Sc. STATISTICS SEMESTER VI

| Vertical     | Course Code | Nomenclature          | Topics                           | Credits |
|--------------|-------------|-----------------------|----------------------------------|---------|
| DSC          | RJDSCSTA361 | Distribution          | Unit- I Bivariate Normal         | 04      |
| (12 credits) |             | Theory and Stochastic | Distribution                     |         |
|              |             | Processes             | Unit- II Generating Functions    |         |
|              |             |                       | Unit- III Stochastic Processes   |         |
|              |             |                       | Unit- IV Queueing Theory         |         |
|              | RJDSCSTA362 | Testing of            | Unit- I Most Powerful Tests      | 04      |
|              |             | Hypothesis            | Unit- II Uniformly Most Powerful |         |
|              |             |                       | & Likelihood Ratio Tests         |         |
|              |             |                       | Unit- III Sequential Probability |         |
|              |             |                       | Ratio Test                       |         |
|              |             |                       | Unit- IV Non-Parametric Tests    |         |
|              | RJDSCSTAP36 | Practical             | Statistics Practical             | 04      |
|              | 1           |                       |                                  |         |
|              |             |                       |                                  |         |
|              |             |                       |                                  |         |
|              |             |                       |                                  |         |

# T.Y.B.Sc. Semester VI Statistics DSC Syllabus

| SEMESTER                    | : | VI (CORE SUBJECT)                                   |
|-----------------------------|---|-----------------------------------------------------|
| TITLE OF THE SUBJECT/COURSE | : | <b>Distribution Theory and Stochastic Processes</b> |
| COURSE CODE                 | : | RJDSCSTA361                                         |
| CREDITS                     | : | 04                                                  |
| DURATION                    | : | 60 HOURS                                            |

#### LEARNING OBJECTIVES

- 1. Understand, interpret, and apply the properties of the bivariate normal distribution, including joint, marginal, and conditional distributions, as well as the concept of correlation and its impact on the shape and orientation of the distribution.
- 2. Define, derive, and apply the Probability Generating Function (PGF) for discrete random variables, and use it to compute probabilities, moments, and understand distributions in a compact and analytical form.
- 3. Application of stochastic processes such as Queuing process, Poisson processes etc. in solving real life problems.

| COURSE  | On completing the course, the student will be able to:                                                                                        | PSO       | BLOOMS LEVEL                                          |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------|
| OUTCOME |                                                                                                                                               | Addressed |                                                       |
| NUMBER  |                                                                                                                                               |           |                                                       |
| CO1     | apply the bivariate normal model to data analysis and real-life scenarios involving two interdependent variables.                             | 1, 3, 7   | BT Level I, II and III remember, understand and apply |
| CO2     | derive PGFs for standard discrete distributions (e.g., Binomial, Poisson) and calculate mean, variance, and higher moments of a distribution. | 2, 3, 4   | BT Level III and IV applying and analyzing            |
| CO3     | develop stochastics and queueing models.                                                                                                      | 3, 4      | BT Level II and III understand and apply              |
| CO4     | apply stochastic models to real-life systems such as communication networks, customer service, and manufacturing.                             | 1, 3, 4   | BT level IV apply                                     |

|                                                                                                                                         | SEMESTER VI (THEORY)                                                                                                                                                                                                                                                        |                                                                                                              | L  | Cr |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----|----|
| Paj                                                                                                                                     | Paper-I: Distribution Theory and Stochastic Processes  Paper Code: RJDSCSTA361                                                                                                                                                                                              |                                                                                                              | 60 | 4  |
|                                                                                                                                         | UNIT I                                                                                                                                                                                                                                                                      |                                                                                                              | 15 |    |
|                                                                                                                                         | BIVARIATE NORMAL DI                                                                                                                                                                                                                                                         | STRIBUTION                                                                                                   |    |    |
| 1                                                                                                                                       | Definition of joint probability distribution function, moments $\mu_{rs}$ where r=0, 1, 2 and distributions. Derivation for marginal probability distributions. Derivation for marginal probability distribution of Conditional distribution of Means & Variances using MGF | d $s=0, 1, 2$ . Marginal & Conditional pability density function of X and Y.                                 |    |    |
|                                                                                                                                         | Correlation coefficient between the rando                                                                                                                                                                                                                                   | m variables.                                                                                                 |    |    |
|                                                                                                                                         | Necessary and sufficient conditions for th                                                                                                                                                                                                                                  | e independence of X and Y.                                                                                   |    |    |
|                                                                                                                                         | Distribution of aX + bY, where 'a' and 'b                                                                                                                                                                                                                                   | o' are constants.                                                                                            |    |    |
| 2 Distribution of sample correlation coefficient when $\rho = 0$ .                                                                      |                                                                                                                                                                                                                                                                             |                                                                                                              |    |    |
| Testing the significance of a correlation coefficient.                                                                                  |                                                                                                                                                                                                                                                                             |                                                                                                              |    |    |
| Fisher's z – transformation. Tests for i) $H_0$ : $\rho = \rho_0$ ii) $H_1$ : $\rho_1 = \rho_2$ .                                       |                                                                                                                                                                                                                                                                             |                                                                                                              |    |    |
|                                                                                                                                         | Confidence interval for $\rho$ .                                                                                                                                                                                                                                            |                                                                                                              |    |    |
|                                                                                                                                         | UNIT II                                                                                                                                                                                                                                                                     |                                                                                                              | 15 |    |
|                                                                                                                                         | GENERATING FUN                                                                                                                                                                                                                                                              | CTIONS                                                                                                       |    |    |
| 1                                                                                                                                       | Definitions of generating function and Expression for mean and variance in term of a convolution of two or more sequence convolution. Generating functions of the Effect of change of origin and scale on P                                                                 | s of generating functions. Definition quences. Generating function of a the standard discrete distributions. |    |    |
| 2 Relation between: i) Bernoulli and Binomial distributions ii) Geometric and Negative Binomial distributions in terms of convolutions. |                                                                                                                                                                                                                                                                             |                                                                                                              |    |    |

### T.Y.B.Sc. Semester VI Statistics DSC Syllabus

|   | UNIT III                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|   | STOCHASTIC PROCESSES                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |  |
| 1 | Definition of stochastic process. Definition of State space. Postulates and difference differential equations for : (i) Pure birth process (ii) Poisson process with initially 'a' members, for a =0 and a >0 (iii) Yule Furry process (iv)Pure death process (v) Death process with $\mu_n = \mu$ (vi) Death process with $\mu_n = n\mu$ (vii) Birth and death process (viii) Linear growth model. Derivation of Pn (t), mean and variance wherever applicable. |    |  |
|   | UNIT IV                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15 |  |
|   | QUEUEING THEORY                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |  |
| 1 | Basic elements of the Queuing model. Roles of the Poisson and Exponential distributions. Derivation of steady state probabilities for birth and death process. Steady state probabilities and various average characteristics for the following models:                                                                                                                                                                                                          |    |  |
|   | (i) (M/M/1) : (GD/ ∞ /∞) (ii) (M/M/1) : (GD/ N /∞)                                                                                                                                                                                                                                                                                                                                                                                                               |    |  |
|   | (iii) (M/M/c) : (GD/∞/∞) (iv) (M/M/c) : (GD/ N /∞)                                                                                                                                                                                                                                                                                                                                                                                                               |    |  |
|   | (v) (M/M/∞) : (GD/ ∞ /∞)                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |  |

#### References

- 1. Kantiswarup, P.K. Gupta, Manmohan: Operations Research, Twelfth edition, Sultan Chand & sons.
- 2. Sharma S. D.: Operations Research, Eighth edition, Kedarnath Ramnath & Co.
- 3. Taha Hamdy A.: Operations Research: Eighth edition, Prentice Hall of India Pvt. Ltd.
- 4. Gupta S C & Kapoor V K: Fundamentals of Mathematical statistics, Eleventh edition, Sultan Chand & Sons.

### T.Y.B.Sc. Semester VI Statistics DSC Syllabus

| SEMESTER                    | : | VI (CORE SUBJECT)            |
|-----------------------------|---|------------------------------|
| TITLE OF THE SUBJECT/COURSE | : | <b>Testing of Hypothesis</b> |
| COURSE CODE                 | : | RJDSCSTA362                  |
| CREDITS                     | : | 04                           |
| DURATION                    | : | 60 HOURS                     |

#### **LEARNING OBJECTIVES**

- 1. Understanding of statistical concepts and techniques.
- 2. Identify, formulate, and analyze statistical problems using appropriate hypothesis testing methods.
- 3. Apply statistical tests to draw inferences and develop solutions based on data analysis.
- 4. Differentiate between parametric and non parametric tests and use them effectively.

| COURSE<br>OUTCOME<br>NUMBER | On completing the course, the student will be able to:                                                                                                                                            | PSO<br>Addressed | BLOOMS LEVEL                                     |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------|
| CO1                         | understand the basic concepts and components of hypothesis testing. Knowledge of simple, composite, null, and alternative hypotheses; Type I & II errors; level of significance; power of a test. | 1, 6             | BT Level I ,and II<br>Remember and<br>understand |
| CO2                         | apply the Neyman-Pearson framework for hypothesis testing. Understand most powerful tests, UMP tests, power functions, and randomized tests.                                                      | 1, 3, 6, 7       | BT Level I ,and II<br>Remember and<br>understand |
| CO3                         | analyze and construct Likelihood Ratio Tests (LRT) for known / unknown mean / variance in normal distributions.                                                                                   | 1, 3, 6, 7       | BT Level I ,and II<br>Remember and<br>understand |
| CO4                         | understand and implement Sequential Probability Ratio Tests. Design and comparison with fixed sample tests; applying SPRT to different distributions.                                             | 1, 3, 6, 7       | BT Level I ,and II<br>Remember and<br>understand |
| CO5                         | differentiate between parametric and non-parametric tests and apply suitable tests for given data types. Use various N.P. tests and understand their assumptions.                                 | 1, 3, 6, 7       | BT Level I ,and II<br>Remember and<br>understand |

|   | SEMESTER VI (THEORY)                                                                                                                                                                                                                                                                                                                                          |                               | L  | Cr |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----|----|
|   | Paper-II: Testing of Hypothesis Paper Code: RJDSCSTA362                                                                                                                                                                                                                                                                                                       |                               | 60 | 4  |
|   | UNIT I                                                                                                                                                                                                                                                                                                                                                        |                               | 15 |    |
|   | MOST POWERFUL TE                                                                                                                                                                                                                                                                                                                                              | ESTS                          |    |    |
| 1 | Problem of testing hypothesis.                                                                                                                                                                                                                                                                                                                                |                               |    |    |
| 2 | Definitions and illustrations of i) Simple hypothesis ii) Composite hypothesis iii) Null Hypothesis iv) Alternative Hypothesis v)Test of hypothesis vi) Critical region vii) Type I and Type II errors viii) Level of significance ix) p-value x) size of the test xi) Power of the test xii) Power function of a test xiii) Power curve.                     |                               |    |    |
| 3 | Definition of the most powerful test of size α for a simple hypothesis against a simple alternative hypothesis. Neyman-Pearson fundamental lemma. Randomized test.                                                                                                                                                                                            |                               |    |    |
|   | UNIT II                                                                                                                                                                                                                                                                                                                                                       |                               | 15 |    |
|   | UNIFORMLY MOST POWERFUL & LIKELIHOOD RATIO TESTS                                                                                                                                                                                                                                                                                                              |                               |    |    |
| 1 | Definition, Existence and Construction of utest.                                                                                                                                                                                                                                                                                                              | uniformly most powerful (UMP) |    |    |
| 2 | Likelihood ratio principle. Definition of test statistic and its asymptotic distribution (statement only). Construction of LRT for the mean of normal distribution for i) known $\sigma 2$ ii) unknown $\sigma 2$ (two sided alternatives). LRT for variance of normal distribution for i) known $\mu$ ii) unknown $\mu$ (two-sided alternatives hypothesis). |                               |    |    |
|   |                                                                                                                                                                                                                                                                                                                                                               |                               |    |    |

# T.Y.B.Sc. Semester VI Statistics DSC Syllabus

|   | UNIT III                                                                                                                                                                                                                                                                                                                             | 15 |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|   | SEQUENTIAL PROBABILITY RATIO TESTS                                                                                                                                                                                                                                                                                                   |    |  |
| 1 | Sequential test procedure for testing a simple null hypothesis against a simple alternative hypothesis. Its comparison with fixed sample size (Neyman-Pearson) test procedure.                                                                                                                                                       |    |  |
| 2 | Definition of Wald's SPRT of strength $(\alpha, \beta)$ . Graphical / Tabular procedure for carrying out the tests. Problems based on Bernoulli, Binomial, Poisson, Normal and Exponential distributions.                                                                                                                            |    |  |
|   | UNIT IV                                                                                                                                                                                                                                                                                                                              | 15 |  |
|   | NON-PARAMETRIC TESTS                                                                                                                                                                                                                                                                                                                 |    |  |
| 1 | Measurements of Scales: Nominal, Ordinal, Interval and Ratio. Quantiles. Need for non parametric tests.                                                                                                                                                                                                                              |    |  |
| 2 | Distinction between a parametric and a non parametric test.                                                                                                                                                                                                                                                                          |    |  |
| 3 | Concept of a distribution free statistic. Single sample and two sample Nonparametric tests. (i) Sign test (ii) Wilcoxon's signed rank test (iii)Median test (iv) Mann–Whitney test (v) Run test (vi) Fisher exact test (vii) Kruskal - Wallis test (viii) Friedman test. Large sample approximation in various non parametric tests. |    |  |
| 4 | Assumptions, justification of the test procedure for small & large samples.                                                                                                                                                                                                                                                          |    |  |

#### References:

- 1. Lehmann, E. L: Testing of Statistical Hypothesis, Wiley & Sons.
- 2. Daniel W.W.:Applied NonParametric Statistics, First edition Boston-Houghton Mifflin Company.
- 3. Gupta S C & Kapoor V K: Fundamentals of Mathematical statistics, Eleventh edition, Sultan Chand & Sons.
- 4. V.K Rohatgi: An Introduction to Probability and Mathematical Statistics.

# Hindi Vidya Prachar Samiti's Ramniranjan Jhunjhunwala College of Arts, Science & Commerce T.Y.B.Sc. Semester VI Statistics DSC Syllabus

| SEMESTER                    | : | VI (CORE PRACTICAL COMPONENT) |
|-----------------------------|---|-------------------------------|
| TITLE OF THE SUBJECT/COURSE | : | Statistics Practical          |
| COURSE CODE                 | : | RJDSCSTAP361                  |
| CREDITS                     | : | 04                            |
| DURATION                    | : | 120 HOURS                     |

| LEAR | RNING OBJECTIVES                                                                                   |
|------|----------------------------------------------------------------------------------------------------|
| 1    | Solve the problems based on Probability Generating Function and understand its domain of           |
|      | applicability.                                                                                     |
| 2    | Understand application of Stochastic and Queuing Processes to solve real life problems.            |
| 3    | Understand the problem and apply foundational concepts of statistical inference and hypothesis     |
|      | testing to solve the real life problems.                                                           |
| 4    | Analyze real-world problems using suitable statistical test strategies including MP, UMP, and non- |
|      | parametric methods.                                                                                |
| 5    | Interpret and validate results of statistical tests to draw logical and meaningful conclusions.    |

| COURSE<br>OUTCOME<br>NUMBER | On completing the course, the student will be able to:                                                             | PSO<br>Addressed | BLOOMS LEVEL                                          |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------|
| CO1                         | develop a stochastic model to solve problems related to birth and death processes.                                 | 3, 4             | BT Level II and III understand and apply              |
| CO2                         | develop models for queuing processes to solve real life problems related to queueing.                              | 3, 4, 7          | BT Level I, II and III remember, understand and apply |
| CO3                         | implement the Most Powerful (MP) and Uniformly Most Powerful (UMP) tests using appropriate statistical procedures. | 3, 4, 6, 7       | BT Level II and III understand and apply              |
| CO4                         | apply the Likelihood Ratio Test (LRT) in various hypothesis testing contexts.                                      | 3, 4, 6, 7       | BT Level II and III understand and apply              |
| CO5                         | apply the Sequential Probability Ratio Test (SPRT) for decision-making in sequential analysis.                     | 3, 4, 6, 7       | BT Level II and III understand and apply              |
| CO6                         | use non-parametric tests for situations where parametric assumptions do not hold.                                  | 3, 4, 6, 7       | BT Level II and III understand and apply              |

| Semester VI                                      |                                      |  |  |  |  |  |  |  |
|--------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|
| Statistics Practical                             | Paper Code: RJDSCSTAP361             |  |  |  |  |  |  |  |
| Practicals based on D                            | Practicals based on DSC I (60 hours) |  |  |  |  |  |  |  |
| Bivariate Normal Distribution                    |                                      |  |  |  |  |  |  |  |
| 2. Tests for correlation and Interval estimation | n                                    |  |  |  |  |  |  |  |
| 3. Generating Function                           |                                      |  |  |  |  |  |  |  |
| 4. Stochastic Process                            |                                      |  |  |  |  |  |  |  |
| 5. Queuing Theory -1                             |                                      |  |  |  |  |  |  |  |
| 6. Queuing Theory -2                             |                                      |  |  |  |  |  |  |  |
| Practicals based on DS                           | SC II (60 hours)                     |  |  |  |  |  |  |  |
| 1. Testing of Hypothesis - 1                     |                                      |  |  |  |  |  |  |  |
| 2. Testing of Hypothesis - 2                     |                                      |  |  |  |  |  |  |  |
| 3. Likelihood Ratio Tests                        |                                      |  |  |  |  |  |  |  |
| 4. Sequential Probability Ratio Tests            |                                      |  |  |  |  |  |  |  |
| 5. Non Parametric Tests -1                       |                                      |  |  |  |  |  |  |  |
| 6. Non Parametric Tests - 2                      |                                      |  |  |  |  |  |  |  |

#### **Scheme of Examinations**

- 1. Evaluation will be for 100 marks based on both internal and external assessment for DSC I and DSC II.
- 2. Internal examination of 40 Marks for DSC I and DSC II based on MCQ/ True or false/ Short answers / Assignments / Projects / Seminar.
- 3. External examination (Semester End Examination) for DSC I and DSC II of 60 marks based on all units.
- 4. Minimum marks for passing the examination for DSC I and DSC II is 40 %.
- 5. Students must appear for at least one Internal to be eligible for the Semester End Examination.
- 6. Students must appear for the Semester End Examination to be able to complete total credits for a given Semester.
- 7. One combined Practical Examination DSC III (based on DSC I and DSC II) at the end of Semester consisting of 100 marks with minimum 40 marks for passing.
- 8. A candidate will be allowed to appear for the practical examinations if he/she submits a certified Journal of T.Y.B.Sc. Statistics or a certificate from the Head of the Department / Institute to the effect that the candidate has completed the practical course of T.Y.B.Sc. Statistics as per the minimum requirements.
- 9. In case of loss of journal, a candidate must produce a certificate from the Head of the Department /Institute that the practicals for the academic year were completed by the student. However, such a candidate will be allowed to appear for the practical examination, but the marks allotted for the journal (if any) will not be granted.
- 10. HOD's decision, in consultation with the Principal, shall remain final and abiding to all.

# **Evaluation and Assessment** (Based on the centralised guidelines given by EC under NEP 2020)

#### For DSC I and DSC II

**Internal examination**: 40 Marks

Internal examination consists of 2 types of assessments as follows:

| Internal<br>Assessment | Max<br>Marks | Duration              | Evaluation Particulars              |
|------------------------|--------------|-----------------------|-------------------------------------|
| 1                      | 20 /25       | 30 Minutes            | MCQ / True or False / Short Answers |
| 2                      | 20/15        | Based on set of rules | Projects / Assignments / Seminar    |

**External examination**: 60 Marks

Duration: 2 hours.

Theory question paper pattern at the end of the semester for each course is as follows:

| Question no. | Max Marks                 | Question based on |
|--------------|---------------------------|-------------------|
| 1            | 15 (with internal option) | Unit I            |
| 2            | 15 (with internal option) | Unit II           |
| 3            | 15 (with internal option) | Unit III          |
| 4            | 15 (with internal option) | Unit IV           |
| Total        | 60                        |                   |

Key to set effective Question paper:

| Question | Knowledge | Understanding | Application and Analysis | Total marks-<br>Per unit |
|----------|-----------|---------------|--------------------------|--------------------------|
|----------|-----------|---------------|--------------------------|--------------------------|

T.Y.B.Sc. Semester VI Statistics DSC Syllabus

| Unit 1                   | 06  | 05  | 04  | 15   |
|--------------------------|-----|-----|-----|------|
| Unit 2                   | 06  | 05  | 04  | 15   |
| Unit 3                   | 06  | 04  | 05  | 15   |
| Unit 4                   | 06  | 04  | 05  | 15   |
| -TOTAL-<br>Per objective | 24  | 18  | 18  | 60   |
| % WEIGHTAGE              | 40% | 30% | 30% | 100% |

#### For DSC III

**Practical examination: 100 marks** 

| Question no. | Max Marks                 | Question based on |
|--------------|---------------------------|-------------------|
| 1            | 40 (with internal option) | DSC I             |
| 2            | 40 (with internal option) | DSC II            |
| Journal      | 10                        | -                 |
| Viva 10      |                           | -                 |
| Total        | Total 100                 |                   |

# T.Y.B.Sc. Semester VI Statistics DSC Syllabus

### Mapping of the course to Local/Regional/National/International relevance

| Class                             | Course<br>Name                               | Course Code      | Local<br>relevance                                                                                                                                    | Regional<br>relevance                                                                                                                                                                                                                                    | National<br>relevance                                                                                                                                                                                                 | International relevance                                                                                                                                                                                                                             |
|-----------------------------------|----------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TYBSc<br>Statistics<br>DSC-I      | Distribution Theory and Stochastic Processes | RJDSCSTA361      | Useful in developing models to solve queuing problems at local level like queues at ration counters, hospitals etc.                                   | Theory holds significant regional relevance in the Mumbai Metropolitan Region (MMR) and across Maharashtra, due to the area's rapidly growing urban infrastructure, transportation systems, IT hubs, telecommunic ation sectors, and service industries. | Theory is critically relevant at the national level in India, given their wide application across sectors that are central to the country's economic growth, digital transformation, and public service optimization. | Theory has profound global importance, as they form the mathematical foundation for analyzing and solving problems involving randomness, uncertainty, and waiting lines across diverse domains in science, technology, business, and public policy. |
| TYBSc<br>Statistic<br>s<br>DSC-II | Testing of<br>Hypothesis                     | RJDSCSTA362      | 1. Useful in educational research and local industry 2. Local health centres and NGOs can apply statistical testing in evaluating community programs. | 1. helps in regional development projects 2. Analysing                                                                                                                                                                                                   | 1 Aligns with national initiatives like digital India, Atmanirbhar Bharat etc 2. Crucial for national level studies in public health, economy and education.                                                          | 1 Plays major role in global research methodology 2. Foundational knowledge used in international standardized testing and cross country surveys.                                                                                                   |
| T Y B<br>Sc                       | Practical                                    | RJDSCSTAP3<br>61 | Developing<br>models and<br>solving                                                                                                                   | Developing<br>models and<br>solving                                                                                                                                                                                                                      | Developing models and solving                                                                                                                                                                                         | Developing models and solving                                                                                                                                                                                                                       |

| Statistic |  | problems at | problems at  | problems at  | problems at |
|-----------|--|-------------|--------------|--------------|-------------|
| S         |  | the local   | the regional | the national | the global  |
| DSC       |  | level.      | level        | level        | level       |

# T.Y.B.Sc. Semester VI Statistics DSC Syllabus

### Mapping of the course to Employability/ Entrepreneurship/Skill development

The courses in Statistics have been designed to impart one or more skills to make students employable.

| Class           | Course<br>Name                                        | Course Code | Topic focussing on<br>Employability/<br>Entrepreneurship/<br>skill development                                             | Employability/Entrep<br>reneurship/Skill<br>development                                         | Specific activity |
|-----------------|-------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------|
| TYBSC<br>SEM VI | Distribution<br>Theory and<br>Stochastic<br>Processes | RJDSCSTA361 | Unit-I Bivariate Normal Distribution Unit- II Generating Functions Unit- III Stochastic Processes Unit- IV Queueing Theory | 1 Data analysis 2 Quality control 3 Business analysis 4 Data Scientist 5 Healthcare sector 6 IT |                   |
|                 | Testing of<br>Hypothesis                              | RJDSCSTA362 | Unit-II UMP test & LRT Unit-III SPRT Unit- IV Non- Parametric Tests                                                        | 1 Data analysis 2 Quality control 3 Market research 4 Consulting services 5 Data scientist      |                   |

### **Integration of Cross cutting Issues**

| Class            | Course Code  | Cross Cutting Issues        |
|------------------|--------------|-----------------------------|
| T Y B Sc         | RJDSCSTA361  | Equity and inclusion, Human |
| Statistics Major | RJDSCSTA362  | values UNSDG 4, 5, 8, 9     |
|                  | RJDSCSTAP361 |                             |