

Affiliated to UNIVERSITY OF MUMBAI

Syllabus for T.Y.B.Sc (under NEP)

PROGRAM: B.Sc. ZOOLOGY

PROGRAM CODE: RJSUZOO

(REVISED in 2025-2026 in alignment with the NEP 2020 facilitating the inter-and multidisciplinary learning and multiple entry and exit of the students)

(CBCS 2025-2026)

T.Y.B.Sc NEP Zoology Syllabus Semester -V & VI

PREAMBLE

The National Education Policy 2020 aims at imparting skill-based learning and caters to the multiple entry and exit facility for the students thus empowering them to acquire knowledge at their pace. In the three-year UG program, the student has two exit options. Students also have the option of choosing the Honors program of four years study in a given discipline and later converting it to five-year integrated PG degree program.

As an undergraduate student, he/she learns the core subject (Major), subject complementing the core subject (Minor), a course from other discipline; open elective course (OEC or GEC) and Vocational and Skill Enhancement course from the Major (VSEC). The remaining verticals under NEP 2020 are IKS (Indian Knowledge System), AEC (Ability Enhancement Course), VEC (Value Enhancement Course) and with progressive three years of UG, student also completes at different levels OJT (On Job Training), FP (Field Projects), CEP (Community Engagement Program), RP (Research Project) which helps him/her in understanding their roots, application of the knowledge for the benefit of self and the society. Vertical CC (Co-curricular activities and activities related to yoga and human well-being) helps in preparing youth with good character and interpersonal relationships.

The subject of Zoology offers the basic understanding about the vast diversity of the animal kingdom across the globe. It enables the students to strengthen their knowledge in Animal Sciences and in the other allied branches of Zoology. Keeping the interest of learner in mind, the syllabus has been carefully designed. It has a balance of the classical aspects of Zoology which includes topics like taxonomy, ecology, ethology, developmental biology, physiology, fishery science, animal husbandry and economic entomology. The syllabus also includes applied subjects like biochemistry, pathology, immunology, molecular biology and epidemiology.

The undergraduate curriculum has been meticulously designed by considering the need for the subject development, industry requirement, research outlook, competitive exams and entrepreneurship skills. Each unit included in the syllabus has clearly defined objectives. It focuses on outcome-based learning. It aims at inculcating the critical thinking, enhancing the analytical ability, developing writing skills of the students. The syllabus includes field trips to ecological habitats, agrofarms, national parks, sanctuaries, natural history museum, reputed research institutes and industries to widen the student's horizon. The students are encouraged to participate in various project-based activities.

Owing to the current needs of the industry and other sectors, the syllabi is designed in a manner that the learner will be able to apply the knowledge and skills acquired in varied fields. The course encourages a sense of responsibility and empathy towards all living beings, promoting sustainable practices in the learner.

PROGRAMME OUTCOMES (PO) OF UNDERGRADUATE DEGREE PROGRAMMES

Program outcome refers to the overall characteristic an individual is supposed to acquire on completion of the three-year degree program in Bachelor of Science. The attributes based on acquisition, accumulation, and processing of knowledge of the subject are transferable beyond the discipline and useful in different domains of life.

Critical Thinking: Concepts, methodology and ability to formulate questions stimulate the inquisitiveness and critical thinking amongst the students.

Scientific Temperament: The nurturing of the young minds to observe and analyse the experiments in the laboratory or a phenomenon occurring around them to obtain a logical scientific explanation for it.

Analytical Thinking: The ability to think analytically can be developed by training and practice. The syllabus offers the student to understand the concept and design projects or experiments based on them.

Domain knowledge: The domain knowledge is the key to the understanding of advances and complex subject matter.

Social Ethics: The students are exposed to different problems caused due to human activity. They learn to conduct themselves without creating a damage to fellow beings.

Animal Ethics: The sensitization towards ethical issues associated with use of animals in the laboratory is highlighted and the solutions to overcome it are introduced.

Problem Solving: The ability to handle a situation is enhanced in the students by problem solving assignments, case studies, projects to make them competent, conscious and creative individual.

Environmental Sustainability: Environment related issues are addressed through workshops, Guest lectures and field studies.

PROGRAMME SPECIFIC OUTCOMES (PSOS)-BSc PROGRAMME IN ZOOLOGY

PSO1	Understands the nature and basic concepts of systematic classification, ecology,
	biomolecules, animal biotechnology, cell biology, and genetics.
PSO2	Analyse and comprehend the concepts of developmental biology, genetics and
	molecular biology. Acquaint with the skills in fishery biology, animal husbandry and
	economic entomology to boost entrepreneurship skills.
	Acquire skills and necessary training for techniques in haematology, immunology,
PSO3	physiology, endocrinology, enzymology, molecular biology, toxicology, cancer
	biology and field biology. Enhance knowledge on biostatistics, alternate energy, Wild-
	life tourism. Wildlife conservation and epidemiology to provide wider job prospects in
	the realm of Zoology.
PSO4	Perform laboratory procedures as per standard protocols in the areas of animal diversity,
	genetics, biochemistry, molecular biology, physiology, immunology, developmental
	biology, environmental science and pollution.
PSO5	Apply ethical principles and knowledge in understanding of Zoology to one's own life
	and work. Applications of biological sciences in different areas that contributes towards
	nation building.

T.Y.B.Sc NEP Zoology Syllabus Semester -V & VI

Credit Structure for B Sc Semester V as per NEP 2020 Implemented from the academic year 2025-2026 **Major Subject: Zoology**

Semester V

Level 5.5 Major Zoology

Courses	Course titles	Course code	Credits	Total
				Credits
Major Theory I	Anatomy, Embryology,	RJDSCZOO351	4	
	Physiology-I			
Major Theory II	Molecular Biology, Genetics and	RJDSCZOO352	4	12
	Wildlife Study			
Major Practical	Practicals based on Theory I	RJDSCZOOP351	2	-
	Practicals based on Theory II	RJDSCZOOP352	2	_
Discipline Specific	Department of Zoology offers			
Elective Course	students DSE –	RJDSEZOO351	4	4
(DSE)	DSE-I Epidemiology	RJDSEZOO352		
	DSE-II Behavioural Biology			
Vocational Skill	Economic Zoology	RJVSCZOO351	3+1	4
Enhancement				
Course (VSC)				
Field Project (FP)	Field work with submission of field report	RJFPZOO351	2	2
Total Credits				22

DISTRIBUTION OF TOPICS AND CREDITS

T.Y.B.Sc. ZOOLOGY SEMESTER V

Course	Nomenclature	Credits	Duration
RJDSCZOO351	Anatomy, Embryology, Physiology-I	04	60 hours
RJDSCZOO352	Molecular Biology, Genetics and Wildlife Study	04	60 hours
RJDSCZOOP351	Practical I	02	60 hours
RJDSCZOOP352	Practical II	02	60 hours

T.Y.B.Sc NEP Zoology Syllab	us Semester - V	& VI
-----------------------------	-----------------	------

SEMESTER	:	V
TITLE OF THE	:	ANATOMY, EMBRYOLOGY, PHYSIOLOGY-I
SUBJECT/COURSE		
COURSE CODE	:	RJDSCZOO351
CREDITS	:	04
DURATION	:	60 Lectures

LE	LEARNING OBJECTIVES			
1	To acquaint learners with general idea of comparative anatomy of vertebrates			
2	To familiarize the learner with the developmental stages of frog.			
3	To introduce the different aspects of human blood and its clinical significance.			
4	To comprehend the physiological aspects of homeostasis and endocrinology.			

COURSE	AFTER COMPLETING THE	PSO	BLOOM'S TAXONOMY LEVEL
OUTCOMES	COURSE, THE LEARNER	ADDRESSED	
	WILL BE ABLE TO:		
CO1	understand the anatomy of skin	1,5	BT level I, II, III remember,
	and digestive system of		understand and apply
	vertebrates		
CO2	understand the different event	2 &4	BT level IV Analyse draw
	involved in the metamorphosis		connections among ideas
	of frog.		
CO3	identify various components of	3, 4	BT Level I, II, III remember,
	blood and their importance.		understand and apply
CO4	familiarize with adaptations of	3, 4	BT level II & IV
	animals for regulation of heat		Interpret, Compare and analyse
	and ionic balance.		

T.Y.B.Sc ZOOLOGY SEMESTER-V (THEORY)	HRS	Credits
PAPER I: ANATOMY, EMBRYOLOGY, PHYSIOLOGY-I Course Code: RJDSCZOO351	60	4
UNIT I: COMPARATIVE ANATOMY OF VERTEBRATES: I	15	
 1.1 Skin: Anatomy and functions of vertebrate skin, epidermal and dermal derivatives, scales, claws, nails, hoofs, horns, antlers, beaks, feathers, hair, and glands. 1.2 Digestive system: Digestive tube and associated glands, tooth structure, classification of teeth, dental formula in mammals. 		
UNIT II: DEVELOPMENTAL BIOLOGY OF FROG	15	
2.1 Pre embryonic development :Egg, spawn		
2.2 Post embryonic development : cleavage, blastula, gastrula, neurula 2.3 Metamorphosis.		
UNIT III: BASIC HAEMATOLOGY	15	
 3.1 Composition of blood: plasma and its constituents, blood cells 3.2 Formed elements of blood: 3.2.1 Erythrocytes: Erythropoiesis, Structure and functions of RBC, variation in number, types of anaemia. 3.2.2 Haemoglobin: Structure, formation and degradation, variants of haemoglobin (foetal, adult). 3.2.3 Leucocytes: Leucopoiesis, types and functions, variation in number - leucocytosis and leukopenia. 3.2.4 Thrombocytes: Thrombopoiesis, Structure, clotting factors, mechanism of clotting, variation in number-thrombopenia, thrombocytosis. 3.3 Blood volume: Total quantity and regulation; haemorrhage. 		
UNIT IV: HOMEOSTASIS: THERMOREGULATION AND IONIC REGULATION	15	
4.1 Homeostasis: External and internal environment; Control systems in Biology:		
 4.2 Thermoregulation: 4.2.1 Mechanism of heat production and heat Loss: Shivering and Non-shivering thermogenesis, brown fat- special thermogenic tissues in mammals, Evaporative and Non-evaporative 4.2.2 Acclimation /acclimatization and adaptive response to temperature (Daily torpor, Hibernation, Aestivation) 4.3 Osmotic and Ionic regulation: 4.3.1 Ionic regulation in iso-osmotic, hypo-osmotic and hyper-osmotic environment. 4.3.2 Problems of living in terrestrial environment: water absorption, salt water ingestion and salt excretion, metabolic water and behavioural adaptations 		

SEMESTER	:	V
TITLE OF THE	:	MOLECULAR BIOLOGY, GENETICS AND
SUBJECT/COURSE		WILDLIFE STUDY

TITLE OF THE	:	MOLECULAR BIOLOGY, GENETICS AND
SUBJECT/COURSE		WILDLIFE STUDY
COURSE CODE	:	RJDSCZOO352
CREDITS	:	04
DURATION	:	60 Lectures

LE	ARNING OBJECTIVES
1	To introduce molecular biology of gene alteration, its effects and repair mechanisms for DNA
	damage.
2	To acquaint learners with concepts of chromosomal aberrations various genetic disorders and
	diagnosis.
3	To introduce learner to the various national parks, sanctuaries and ecotourism.
4	To educate learners about threats to wildlife and the conservation measures necessary to protect
	it.

COURSE	AFTER COMPLETING THE	PSO	BLOOM'S TAXONOMY
OUTCOMES	COURSE, THE LEARNER	ADDRESSED	LEVEL
	WILL BE ABLE TO:		
CO1	get an insight in the intricacies		BT Level I, II, III remember,
	of chemical and molecular processes that alter the gene.	3, 4	understand and apply
CO2	identify chromosomal	2,4,5	BT level III &IV
	abnormalities and genetic disorders. They will		
	understand the prenatal and diagnostics for detecting		Apply and Analyse
	genetic defects.		
CO3	understand importance of	3,4	BT level I & II
	national parks, sanctuaries and		Introduce and understand
	need of ecotourism		introduce and understand
CO4	gain knowledge about	1,3, 5	BT level I, IV, V
	techniques used in wildlife		Damamhar analysa and avaluate
	conservation and laws		Remember, analyse and evaluate
	associated with wildlife		
	protection.		

T.Y.B.Sc ZOOLOGY SEMESTER-V (THEORY)	HRS	Credits
PAPER II: MOLECULAR BIOLOGY, GENETICS AND WILDLIFE STUDY Course Code: RJDSCZOO352	60	4
UNIT I: MOLECULAR BIOLOGY	15	
1.1: Mutations		
1.1.1: Point mutations - Deletion and insertion mutations, substitution mutation and		
its type (silent, missense and nonsense mutations, transition and transversion),		
frameshift mutations (due to Deletion and Insertion mutations).		
1.1.2: Trinucleotide repeat expansions - fragile X syndrome, Huntington disease		
1.2: Mutagenic agents		
1.2.1: Physical agents: Ionizing radiation (X-rays, α , β and γ rays), Non-ionizing		
radiation (UV light)		
1.2.2: Chemical agents: Base analogs (5-bromouracil); Intercalating agents (ethidium		
bromide); Deaminating agents (nitrous acid); Hydroxylating agents (hydroxylamine);		
Alkylating agents (mustard gas).		
1.2.3: Biological agents: transposable elements and viruses		
1.3: Preventative and repair mechanisms for DNA damage		
1.3.1: Mechanisms that prevent DNA damage - superoxide dismutase and catalase		
1.3.2: DNA repair Mechanisms - direct DNA repair (photoreactivation, excision		
repair), recombination repair, SOS repair.		
UNIT II: GENETICS	15	
2.1: Chromosomal Aberrations		
2.1.1 Numerical: Aneuploid and Polyploidy (Autopolyploidy and Allopolyploidy);		
Non-disjunction during mitosis and meiosis.		
2.1.2 Structural: Types, effects, significance and disorder: Deletion, Translocation,		
Inversion and Duplication.		
2.2: Genetic Disorders		
2.2.1 Inborn Errors of Metabolism: Phenylketonuria, G-6-PD deficiency,		
Alkaptonuria, Albinism;		
Aikaptonuna, Aiomism.		
2.2.2 Single gene mutation (Cystic fibrosis), Multifactorial gene mutation (Breast Cancer)		
2.2.2 Single gene mutation (Cystic fibrosis), Multifactorial gene mutation (Breast Cancer)		
2.2.2 Single gene mutation (Cystic fibrosis), Multifactorial gene mutation (Breast		
2.2.2 Single gene mutation (Cystic fibrosis), Multifactorial gene mutation (Breast Cancer)2.2.3 Uniparental Diasomy: Angelman Syndrome and Prader-Willi Syndrome.		
 2.2.2 Single gene mutation (Cystic fibrosis), Multifactorial gene mutation (Breast Cancer) 2.2.3 Uniparental Diasomy: Angelman Syndrome and Prader-Willi Syndrome. 2.3: Diagnosis: 		
 2.2.2 Single gene mutation (Cystic fibrosis), Multifactorial gene mutation (Breast Cancer) 2.2.3 Uniparental Diasomy: Angelman Syndrome and Prader-Willi Syndrome. 2.3: Diagnosis: 2.3.1 Prenatal Diagnosis: Amniocentesis and Chorionic villus sampling 		
 2.2.2 Single gene mutation (Cystic fibrosis), Multifactorial gene mutation (Breast Cancer) 2.2.3 Uniparental Diasomy: Angelman Syndrome and Prader-Willi Syndrome. 2.3: Diagnosis: 2.3.1 Prenatal Diagnosis: Amniocentesis and Chorionic villus sampling 	15	
 2.2.2 Single gene mutation (Cystic fibrosis), Multifactorial gene mutation (Breast Cancer) 2.2.3 Uniparental Diasomy: Angelman Syndrome and Prader-Willi Syndrome. 2.3: Diagnosis: 2.3.1 Prenatal Diagnosis: Amniocentesis and Chorionic villus sampling 2.3.2 Banding techniques (G,C,Q), FISH, Protein truncation test (PTT). UNIT III: WILDLIFE PROTECTED AREAS 	15	
 2.2.2 Single gene mutation (Cystic fibrosis), Multifactorial gene mutation (Breast Cancer) 2.2.3 Uniparental Diasomy: Angelman Syndrome and Prader-Willi Syndrome. 2.3: Diagnosis: 2.3.1 Prenatal Diagnosis: Amniocentesis and Chorionic villus sampling 2.3.2 Banding techniques (G,C, Q), FISH, Protein truncation test (PTT). 	15	

 3.4 National parks and sanctuaries in India: Jim Corbett, Kaziranga, Nagarhole, Bhitarkanika, Marine National Park in Gulf of Kutch, Bharatpur bird sanctuary. 3.5 Global National parks: Grand Canyon NP, Galapagos NP, Serengeti NP. *A Case Study of Sustainable Tourism in Yellowstone National Park, Masai Mara's 		
tourism industry, Project Tiger, Bishnoi movement		
UNIT IV: WILDLIFE MANAGEMENT	15	
 4.1 Introduction: Habit, Habitat & Territory of Wild Animals for developing management strategies. 4.2 Threats to Wildlife 		
4.2.1: Poaching and hunting, deforestation, encroachment, competition (intraspecific and inter-specific), Climate change, diseases (zoonosis and reverse zoonosis)		
4.2.2: Tourism and human animal conflict 4.3 Wildlife Conservation		
 4.3.1: Techniques and methods used for wildlife census: Aerial counts (wildlife drones), camera trap, line transect census and track surveys, capture mark recapture method, wildlife radio telemetry, GPS 4.3.2: Forest management policies and Acts: Forest policy 1988; The Indian Forest 		
Act, 1927; Indian Wildlife (Protection) Act, 1972 and Convention for International Trade of endangered species (CITES).		
*Case studies: Community based conservation and management in Namibia, Wolf reintroduction in Yellow Stone National Park, Silent Valley conservation- people's movement, Diclofenac and vulture population decline		

SEMESTER	:	V CORE PRACTICAL COMPONENT
TITLE OF THE	:	PRACTICAL I (Based on Paper I)
SUBJECT/COURSE		
COURSE CODE	:	RJDSCZOOP351
CREDITS	:	02
DURATION	:	60 HRS

LE	LEARNING OBJECTIVES			
1	The student will learn to do the mounting of scales, cells and observe under a microscope.			
2	The student will learn to carry out diagnostic biochemical estimations.			
3	Student will learn to observe, analyse and interpret the results			

COURSE	AFTER COMPLETING THE	PSO	BLOOM'S TAXONOMY
OUTCOMES	COURSE, THE LEARNER	ADDRESSED	LEVEL
	WILL BE ABLE TO;		
CO1	handle instruments like	4,5	III ,IV and V
	compound microscope,		Calculate, evaluate and interpret
	hemocytometer.		
CO2	count cells using Neubauer	4,5	III ,IV and V
	chamber		Calculate, evaluate and interpret
CO3	conduct basic CBC and	4,5	III ,IV and V
	biochemical diagnostic tests.		Calculate, evaluate and interpret

T.Y.B.Sc ZOOLOGY SEMESTER-V (PRACTICALS)

PRACTICAL I (Based on Paper I)

Paper Code: RJDSCZOOP351

- 1. Mounting of fish scales Placoid, cycloid and ctenoid.
- 2. Study of types of feathers/Horns
- 3. Study of integumentary systems V.S. of skin of Shark, Frog, Calotes, Pigeon and Human
- 4. Identification of frog Spawn, cleavage, blastula, gastrula, neurula
- 5. Effect of different ionic conditions on RBC.
- 6. Enumeration of total count of Erythrocytes.
- 7. Enumeration of total count of Leucocytes.
- 8. Estimation of total serum/ plasma proteins by Folin's method.
- 9. Estimation of blood glucose by o-toluidine method.
- 10. Erythrocyte Sedimentation Rate by suitable method Westergren or Wintrobe method (DEMO).
- 11. Estimation of haemoglobin by Sahli's acid haematin method(DEMO).

SEMESTER	•	V CORE PRACTICAL COMPONENT
TITLE OF THE	:	PRACTICAL II (Based on Paper II)
SUBJECT/COURSE		
COURSE CODE	:	RJDSCZOOP352
CREDITS	:	02
DURATION	:	60 HRS

LE	ARNING OBJECTIVES
1	To learn the technique of karyotype analysis.
2	To learn interpretation of genetic formulae
3	To learn about different National parks and wildlife sanctuaries.
4	To familiarize them with some basic techniques of population analysis .

			T
COURSE	AFTER COMPLETING THE	PSO	BLOOM'S TAXONOMY
OUTCOMES	COURSE, THE LEARNER WILL	ADDRESSED	LEVEL
	BE ABLE TO;		
CO1	Prepare a karyogram from photograph	4 and 5	II and V
	and interpret the result		identify and interpret
CO2	Write the genetic formula as well as	4 and 5	IV and V
	interpret genetic formulae.		evaluate and interpret
CO3	Identify brand animals of different	4 and 5	III and IV
	national parks and sanctuaries as well		Categorise,and interpret
	as locate different national parks on		
	the map.		
CO4	Conduct transect and quadrant method	4 and 5	IV ,V,VI
	for population density study		evaluate ,interpret and create
L			1

T.Y.B.Sc ZOOLOGY SEMESTER-V (PRACTICALS)

PRACTICAL II (Based on Paper II)

Paper Code: RJDSCZOOP352

- 1. Karyotype (Idiogram) analysis for the following syndromes with comments on numerical and / or structural variations in chromosomes (no cutting of chromosomes):
- a. Turner's syndrome
- b. Klinefelter's syndrome
- c. Down's syndrome
- d. Cri-du-chat syndrome
- e. D-G translocation
- f. Edward's syndrome
- g. Patau's syndrome.
- 2.Interpretation of genetic formulae: Deletion, duplication, inversion and translocation.
- 3. To mark national parks and sanctuaries on map of India.
- 4.To identify brand animals of various national parks, sanctuaries and comment on its IUCN status.
- 5. Analysis of community by line transect and quadrant method.
- 6. Field Visit

T.Y.B.Sc NEP Zoology Syllabus Semester -V & VI

SKELETON PAPER FOR PRACTICAL I -SEMESTER V RJDSCZOOP351

Total marks: **50**

Q.1. Major experiment:

15M

Enumeration of total count of Erythrocytes. / Enumeration of total count Leucocytes.

OR

Estimation of total serum/ plasma proteins by Folin's method / Detection of blood glucose by O-toluidine method.

Q.2.Minor experiment:

10M

Mounting of fish scales - Placoid, cycloid and ctenoid

OR

Study on the effect of different concentrations of sodium chloride on RBC

Q.3. Identification - 5 spots 3 marks each

15 M

- A. Types of feathers
- B. Types of horns
- C. Study of integumentary systems V.S. of skin of Shark, Frog, Calotes, Pigeon and Human
- D. Identification of Spawn, cleavage, blastula, gastrula, neurula.
- E. ESR/ HB

Q4. Viva Voce 05 M

Q5. Journal and Attendance

05 M

T.Y.B.Sc NEP Zoology Syllabus Semester -V & VI

SKELETON PAPER FOR PRACTICAL II -SEMESTER V RJDSCZOOP352

Total Marks 50

Q.1. **Major experiment**:

10M

Analysis of community by A Line transect method OR B Quadrant Method

Q.2.Minor experiment:

08 M

Karyotype (Idiogram) analysis for the syndromes with comments on numerical and / or structural variations in chromosomes (no cutting of chromosomes).

Q.3. Identification - 4 spots 3 marks each

12 M

To mark national parks and sanctuaries on map of India

To identify brand animals of various national parks, sanctuaries and comment on its IUCN status

Study of tracking instruments for wildlife

Interpretation of genetic formula

Q4. Excursion report and viva based on it.

10M

Q5. Viva 05 M

Q.6.Journal 05M

SCHEME OF EXAMINATION (FOR BOTH SEMESTERS)

Total: 60 marks

Internal examination

There would be two internal class tests comprising of 20 marks each (Total 40 marks).

Internal test shall be conducted in the form of MCQ Test/ Assignments/Presentations

Question paper pattern for external theory

Q.1

A ANY TWO 6 MARKS EACH--- 12 MARKS

B ANY ONE 3 MARKS

Q.2

A ANY TWO 6 MARKS EACH---- 12 MARKS

B ANY ONE 3 MARKS

Q.3

A ANY TWO 6 MARKS EACH---- 12 MARKS

B ANY ONE 3 MARKS

Q.4

A ANY TWO 6 MARKS EACH --- 12 MARKS

B ANY ONE 3 MARKS

T.Y.B.Sc NEP Zoology Syllabus Semester -V & VI

REFERENCES

- 1. Comparative Anatomy of the Vertebrates by Kent, G. C. (2012). (10th ed.). McGraw-Hill Education.
- 2. Textbook of Vertebrate Zoology by Kotpal, R. L. (2013). (Latest ed.). Rastogi Publications.
- 3. Vertebrate Zoology by Pough, H. B., Janis, C. M., & Heiser, J. B. (2012). (7th ed.). Pearson Education.
- 4. Vertebrates: Comparative Anatomy, Function, Evolution by Kardong, K. V. (2015). (6th ed.). McGraw-Hill Education.
- 5. Vertebrate Anatomy by Datta, A. K. (2015). (Latest ed.). S. Chand Publishing.
- 6. Comparative Anatomy of Vertebrates by Straus, W. L. (1960). (Latest ed.). Oxford & IBH Publishing Co.
- 7. Human Physiology Volume 1; C.C. Chatterjee.
- 8. Human Physiology Volume 2; C.C. Chatterjee.
- 9. Principles of Anatomy & Physiology; Thirteenth Edition; Gerard J. Tortora& Bryan Derrickson; Biological Science Textbooks, Inc.; 2012.
- 10. Guyton and Hall Textbook of Medical Physiology (Guyton Physiology)
- 11. A Textbook of Veterinary and General Pathology; Second edition; J. L. Vagad; IBDC Publishers.
- 12. Clinical Pathology; Batra Neelam; Vikas Publishing House Pvt. Ltd.; Nov. 1982.
- 13. Developmental Biology: 5th Ed, Scott F. Gilbert, Sinauer Associates Inc.
- 14. Developmental Biology: T. Subramoniam, Narosa Publishers.
- 15. Genetics The continuity of life; Daniel Fairbanks and Ralph Andersen; Brooks/ Cole Publishing Company; 1999.
- 16. Genetics; Robert Weaver and Philip Hedrick; McGraw Hill; 2001. Genetics A Molecular Approach; Third Edition; Peter J. Russell; Pearson Education, Inc. (Benjamin Cummings), San Francisco; 2010.
- 17. Genetics; M.W. Farnsworth; Harper and Row Publishers, Inc., USA; 1978.
- 18. Principles of Genetics; Eighth Edition; Gardner, Simmons and Snustad; John Wiley and Sons (Asia) Pte. Ltd., Singapore; 2002.
- 19. The Science of Genetics An Introduction to Heredity; Fourth Edition; George W. Burns; Macmillan Publishing Co., Inc., New York; 1980.

T.Y.B.Sc NEP Zoology Syllabus Semester -V & VI

- 20. Wildlife Management and Conservation Contemporary Principles and Practices;
- 21. Paul R. Krausman and James W. Cain III.
- 22. Wildlife Ecology, Conservation, and Management; John M. Fryxell, Anthony R. E.Sinclair, Graeme Caughley.

SEMESTER VI

Credit Structure for B Sc Semester VI as per NEP 2020 Implemented from the academic year 2025-2026 Major Subject: Zoology

Semester VI

Level 5.5 Major Zoology

Courses	Course titles	Course code	Credits	Total
				Credits
Major Theory I	Anatomy, Embryology,	RJDSCZOO361	4	
	Physiology-II			
Major Theory II	Genetic Engineering, Cancer	RJDSCZOO362	4	12
	Biology, Zoogeography And			
	Energy Resources			
Major Practical	Practicals based on Theory I	RJDSCZOOP361	2	
	Practicals based on Theory II	RJDSCZOOP362	2	
Discipline Specific	Department of Zoology offers			
Elective Course	students DSE –	RJDSEZOO361	4	4
(DSE)	DSE-I Public Health And Disease	RJDSEZOO362		
	DSE-II Ethology			
Vocational Skill	Environmental Science and	RJVSCZOO361	2	2
Enhancement	Pollution			
Course (VSC)				
OJT	Report on On-Job-Training	RJOJTZOO361	4	4
Total Credits				22

DISTRIBUTION OF TOPICS AND CREDITS

T.Y.B.Sc. ZOOLOGY SEMESTER V

Course	Nomenclature	Credits	Duration
RJDSCZOO361	Anatomy, Embryology, Physiology-II	04	60 hours
RJDSCZOO362	Genetic Engineering, Cancer Biology, Zoogeography And Energy Resources	04	60 hours
RJDSCZOOP361	Practical I	02	60 hours
RJDSCZOOP362	Practical II	02	60 hours

T.Y.B.Sc NEP Zoology Syllab	us Semester - V	& VI
-----------------------------	-----------------	------

SEMESTER	:	VI
TITLE OF THE	:	ANATOMY, EMBRYOLOGY, PHYSIOLOGY-II
SUBJECT/COURSE		
COURSE CODE	:	RJDSCZOO361
CREDITS	:	04
DURATION	:	60 Lectures

LE	LEARNING OBJECTIVES					
1	To introduce the learner to comparative development of nervous system and urinogenital system.					
2	To acquaint learners with knowledge of developmental biology with chick as a model.					
3	To introduce the topic of immunology with emphasis on building strong foundation about the immune					
	system.					
4	To understand the working of neurotransmitters and basics of cardiac physiology.					

	1	1	
COURSE	AFTER COMPLETING THE	PSO	BLOOM'S TAXONOMY
OUTCOMES	COURSE, THE LEARNER	ADDRESSED	LEVEL
	WILL BE ABLE TO:		
CO1	comprehend and differentiate	1,5	BT level II, III, IV
	between development of different vertebrate nervous systems and		Compare, sketch and analyse
	urinogenital systems.		
CO2	understand the basics of chick embryo development and the practical applications of studying chick embryology.	1,5	BT level IV Analyse draw connections among ideas
CO3	familiarise with types of immunity and the significant role of immune system.	3, 4	BT level II and III Understand and apply
CO4	identify the role of neurotransmitters and appreciate the working of human heart.	2. 3	BT level II and III Understand and apply

T.Y.B.Sc ZOOLOGY SEMESTER-VI (THEORY)	HRS	Credits
PAPER I: ANATOMY, EMBRYOLOGY, PHYSIOLOGY-II Course Code: RJDSCZOO361	60	4
UNIT I: COMPARATIVE ANATOMY OF VERTEBRATES: II	15	
1.1 Nervous system: Development and differentiation of primary brain vesicles and		
their cavities, flexures of the brain, Structural modification of vertebrate brain with		
reference to shark, frog, lizard, pigeon, and rabbit.		
1.2 Urinogenital System: Archinephros, pronephros, mesonephros, metanephros,		
structure of nephron, urinogenital ducts, urinary bladder in vertebrates		
UNIT II: DEVELOPMENTAL BIOLOGY OF CHICK	15	
2.1 Structure of Hen's egg, physico-chemical nature and forms of yolk - granular,		
platelets and spheres; fertilization and post fertilization events (cleavage, blastulation, gastrulation)		
2.2 Structure of chick embryo - 18hours, 24 hours, 33 hours, 48 hours and 72 hours		
2.3 Extra embryonic membranes		
UNIT III: BASIC IMMUNOLOGY	15	
3.1 Introduction to Immunology		
3.2 Cells of the immune system: B cells, T cells , null cells, macrophages, dendritic		
cells mast cells		
3.3 Antigens: Definition and properties; Haptens.		
3.4 Antibodies: Definition, basic structure, classes of antibodies – IgG, IgA, IgM, IgD & IgE		
3.5 Innate immunity: Definition, factors affecting innate immunity, Mechanisms of innate immunity (First and second line of defense).		
3.6 Acquired immunity: Definition, Antibody mediated and cell mediated		
immunity; Types: Active Acquired immunity (Natural and Artificial), Passive		
Acquired immunity(Natural and Artificial).		
UNIT IV: CHEMICAL MESSENGERS AND CARDIAC PHYSIOLOGY	15	
4.1 Chemical Messengers		
4.1.1 Introduction and classification		
4.1.2 Structure, function and clinical significance of Neurotransmitters		
(Acetylcholine, GABA, Dopamine, Serotonin Epinephrine)		
4.2 Cardiac Physiology		
4.2.1 Vascular pumps: Suction pump in open circulation and pressure pump in		
closed circulation		
4.2.2 Cardiac output, Venous Return, Pacemaker, Electrical activity in heart		
muscles: Electrocardiogram		
4.2.3 Chemical and nervous regulation of heart		

SEMESTER	:	VI
TITLE OF THE	:	GENETIC ENGINEERING, CANCER BIOLOGY,
SUBJECT/COURSE		ZOOGEOGRAPHY AND ENERGY RESOURCES
COURSE CODE	:	RJDSCZOO362
CREDITS	:	04
DURATION	:	60 Lectures

LE	LEARNING OBJECTIVES				
1	To understand the tools and techniques used in genetic engineering.				
2	To impart the knowledge of cellular and molecular biology of cancer in cancer prevention, diagnosis and treatment.				
3	To introduce the learner to distribution of animals and different zoogeographical realms.				
4	To introduce the learner to alternative renewable and sustainable sources of energy				

COURSE OUTCOMES	AFTER COMPLETING THE COURSE, THE LEARNER WILL BE ABLE TO:	PSO ADDRESSE D	BLOOM'S TAXONOMY LEVEL
CO1	Learner will be familiarized with vast arrays of techniques of gene manipulation.	1,5	BT level IV Analyse draw connections among ideas
CO2	The student will understand at the cellular level the causes, preventive measures and treatment for cancer.	1	BT Level I, II, III remember, understand and apply
СОЗ	Learner will understand different mechanisms of distribution of animals across different zoogeographic realms	1	BT I, IV Rember, identify and categorise
CO4	Learner will known the alternative sources of energy and also different types of energy policies.	2,5	BT I,II,III Identify, classify and apply

T.Y.B.Sc ZOOLOGY SEMESTER-VI (THEORY)	HRS	Credits
PAPER II: GENETIC ENGINEERING, CANCER BIOLOGY, ZOOGEOGRAPHY AND ENERGY RESOURCES Course Code: RJDSCZOO362	60	4
UNIT I: GENETIC ENGINEERING	15	
1.1 Tools in Genetic Engineering		
1.1.1 Enzymes involved in Genetic Engineering: Restriction enzymes (types, examples and nomenclature), Ligases (<i>E. coli</i> DNA ligase, T4 DNA ligase), polynucleotide kinase, phosphatases, DNA polymerases, reverse transcriptase, terminal transferase.		
1.1.2 Vectors for gene cloning: General properties, advantages and disadvantages of		
cloning vectors - plasmid vectors (pBR322), phage vectors (λ Phage), cosmid vectors (c2XB).		
1.1.3 Cloning techniques: Cloning after restriction digestion - blunt and cohesive end ligation, creation of restriction sites using linkers and adapters, cDNA synthesis (Reverse transcription), genomic and cDNA libraries.		
1.2 Techniques in Genetic Engineering		
1.2.1 PCR technique and its applications.		
1.2.2 Blotting techniques and their applications.		
UNIT II: CANCER BIOLOGY	15	
2.1 Introduction: General properties of cancer cells, cell cycle: (Eukaryotic cell		
cycle and its regulation).		
2.2 Cell Signalling: Signalling molecules and their receptor; functions of cell surface		
receptors; Intracellular signal transduction pathway. Programmed cell death.		
2.3 Causes of Cancer: carcinogens (radiation, chemical and viral), Oncogenes,		
Tumor suppressor genes.		
2.4 Prevention and diagnosis		
2.5 Treatment: Chemotherapy, Radiation therapy, Immunotherapy and Gene therapy.		
*Case Study: Punjab cancer train, vaccination programme for cancer prevention in India.		
UNIT III: ZOOGEOGRAPHY	15	
3.1 Introduction: Plate tectonics and continental drift theory		
3.2 Animal Distribution and Barriers		
3.2.1 Isolating Mechanisms		
3.2.2 Patterns of animal distribution - continuous, discontinuous and bipolar		
3.2.3 Barriers of distribution -Topography, climate, vegetation, large water masses,		
land mass, lack of salinity and special characteristic habit (homing instinct).		

3.2.4 Means of dispersal - land bridges, natural rafts and drift wood, favouring		
gales, migration by host, accidental transportation and by human agencies		
3.3 Zoogeographical Realms: Afrotropical, Australasian, Indo-malayan, Nearctic,		
Neotropical, Oceanian, Palearctic.		
UNIT IV: ALTERNATE ENERGY RESOURCES	15	
4.1 Introduction: Overview and significance of alternative energy sources, Global		
Energy Demand and Sustainability Challenges		
4.2 Major alternate energy resources: Solar energy, Wind energy, Tidal energy,		
Geothermal energy, Nuclear energy, Biomass & biofuels.		
4.3 Future of Alternate Energy and Innovations: Emerging Technologies in		
Energy Generation (Perovskite Solar Cells, Next-Gen Wind Turbines)		
4.4 Energy Policy and Regulation for Renewables, Sustainability Metrics and Carbon		
Neutrality Goals		
*Case Studies: Germany's Renewable Energy Transition (Energiewende), Iceland's		
Geothermal Energy Use, Shirdi Sansthan Solar Kitchen, Wind farms near		
Kanyakumari		

SEMESTER	:	VI CORE PRACTICAL COMPONENT
TITLE OF THE	:	PRACTICAL I (Based on Paper I)
SUBJECT/COURSE		
COURSE CODE	:	RJDSCZOOP361
CREDITS	:	02
DURATION	:	60 HRS

L	EARNING OBJECTIVES
1	To familiarize them with different stages of chick embryo development.
2	To introduce the learner to the basic techniques in immunology
3	To develop skills of observation, identification, anlayse and interpret.

COURSE	AFTER COMPLETING	PSO	BLOOM'S TAXONOMY LEVEL
OUTCOMES	THE COURSE, THE	ADDRESSED	
	LEARNER WILL BE		
	ABLE TO;		
CO1	Understand and	4 and 5	II and V
	differentiate between the		identify and interpret
	different developmental		
	stages of the chick embryo.		
CO2	Perform techniques like	4 and 5	II and V
	western blotting and		evaluate and interpret
	counting of WBC.		
CO3	Identify the histological	4 and 5	III and IV
	sections		Categorise and interpret
CO4	To interpret	4 and 5	IV and V
	Electrocardiogram		Evaluate and, interpret

T.Y.B.Sc ZOOLOGY SEMESTER-VI (PRACTICALS)

PRACTICAL I (Based on Paper I)

Paper Code: RJDSCZOOP361

- 1. Comparative study of brain of shark, frog, lizard, bird (pigeon/ fowl) & rat.
- 2. Study of Chick embryo: cleavage, blastula, gastrula, structure of chick embryo 18 hours, 24 hours, 33 hours, 48 hours and 72 hours.
- 3. Western Blotting Technique
- 4. Leucocyte differential count
- 5. Cells of immune system- B cells, T cells , null cells, macrophages, dendritic cells mast cells.
- 6. Organs of immune system: PRIMARY (Bone marrow, Thymus) and SECONDARY ORGANS (lymph node, spleen).
- 7. Study of ECG and disorders of heart function (tachycardia, bradycardia and ventricular fibrillation)

T.Y.B.Sc NEP Zoology Syllabus Semester -V & VI	T.Y.B.Sc NEP	Zoology	Syllabus	Semester	$-\mathbf{V}$	& VI
--	--------------	---------	-----------------	----------	---------------	------

SEMESTER	:	V CORE PRACTICAL COMPONENT
TITLE OF THE	:	PRACTICAL II (Based on Paper II)
SUBJECT/COURSE		
COURSE CODE	:	RJDSCZOOP362
CREDITS	:	02
DURATION	:	60 HRS

LE	LEARNING OBJECTIVES			
1	To develop critical thinking, problem-solving ability and analytical skills			
2	To make them aware about Zoogeographical distribution of animals on earth			
3	To develop skills of observation, identification, anlayse and interpret.			

COURSE	AFTER COMPLETING THE	PSO	BLOOM'S TAXONOMY LEVEL	
OUTCOMES	COURSE, THE LEARNER	ADDRESSED		
	WILL BE ABLE TO;			
CO1	Solve problem related to	4 and 5	III, IV and V	
	molecular biology and develop		Solve, analyse and interpret	
	critical thinking and analytical			
	skills			
CO2	Identify and classify animals	4 and 5	II and V	
	based of Zoogeographical realms		evaluate and interpret	
CO3	Calulate mitotic index of cells	4 and 5	III and IV	
			calculate and interpret	
604				
CO4	Understand applications of	4 and 5	II and V	
	different alternate energy		Understand and, apply	
	resources.			

T.Y.B.Sc ZOOLOGY SEMESTER-VI (PRACTICALS)

PRACTICAL II (Based on Paper II)

Paper Code: RJDSCZOOP362

- 1. Problems based on restriction enzymes.
- 2. Calculation of mitotic index from the photograph (onion root tip or cancer cells).
- 3. Identification of zoogeography realms.
- 4. Study of application of alternative energy resources (Solar panel, Biogas plant, Photovoltaic cell, Windmill).
- 5. Field Visit

T.Y.B.Sc NEP Zoology Syllabus Semester -V & VI

REFERENCES

- 1. Molecular cloning; Joseph Sambrook, David William Russell; Third Edition; CSHL Press; 2001.
- 2. Gene Cloning An Introduction; Brown .T.A; Fourth Edition; Wiley-Blackwell; 2011.
- 3. Recombinant DNA Genes and Genomes- A short course; 3rd Edition; Watson, J.D.,
- 4. Myers, R.M., Caudy A., Witkowski, J.K.; Freeman and Co. NY; 2007.
- 5. Principles Of Gene Manipulation & Genomics; Primrose SB and R. Twyman; Blackwell Science Publications; 2006.
- 6. Genomes 3; Third Edition; T.A.Brown; Garland Science Publishing; 2007.
- 7. Molecular Biotechnology Principles and applications of recombinant DNA; Glick, B.R. and Pasternak, J. J.; ASM press, Washington; 2010.
- 8. Genetic engineering Principles and Practice; Sandhya Mitra; Macmillan India Ltd., New Delhi.
- 9. Cell and Molecular Biology: Concepts and Experiments, 6th edition (2009), Gerald Karp, Wiley.
- 10. The World of the Cell, 7th edition (2008), Becker, Kleinsmith, Hardin and Bertoni. Benjamin Cummings.
- 11. Essential Cell Biology, 7 th edition (2009), Alberts, Bray, Hopkin, Johnson, Lewis, Raff, Roberts and Walter.
- 12. Molecular Cell Biology, 7 th edition (2012), Lodish, Berk, Kaiser, Krieger, Bretscher, Ploegh, Amon and Scott. W. H. Freeman.
- 13. Developmental Biology: 5th Ed, Scott F. Gilbert, Sinauer Associates Inc.
- 14. Developmental Biology: T. Subramoniam, Narosa Publishers.
- 15. Chick embryology: Bradley M. Patten
- 16. Principles of Environmental Science: W.P.Cunningham& M.A.Cunningham. Tata
- 17. McGraw Hill. · Ecology: N.S.Subramanyam.& AVSS.Sambamurthy, Narosa.
- 18. Zoogeography The Geographical Distribution of Animals; Philip J. Darlington JR; Academic Publishers, Kolkata
- 19. Animal Geography Newbegin.
- 20. Ecological animal geography- Allee, Park and Schmidt.
- 21. Zoogeography of India and South East Asia Dr. S. K. Tiwari; CBS Publishers and Distributors, Delhi; 1985.

T.Y.B.Sc NEP Zoology Syllabus Semester -V & VI

SKELETON PAPER FOR PRACTICAL I -SEMESTER VI

RJDSCZOOP361

	Total marks: 50
Q.1. Major experiment:	12M
Western Blotting technique OR Leucocyte differential count	
Q.2. Minor Experiment: Sketch, label and describe Brain of shark, frog, lizard, bird(pigeon/ fowl) & rat	10M
Q.3.Identification of the given slide/ specimen	15M
A. Study of Chick embryo: cleavage, blastula, gastrula, structure of chick embryo - 24 hours, 33 hours, 48 hours and 72 hours (ANY 3)	18 hours,
B. Identification of cells of immune system- B cells, T cells, null cells, macrophage mast cells. Organs of immune system: Primary (Bone marrow, Thymus) and (lymph node, spleen) (ANY 2)	
Q4. Identify the given ECG and disorders of heart function (ANY 2)	8M

5M

Q5. Journal and Attendance

T.Y.B.Sc NEP Zoology Syllabus Semester -V & VI

SKELETON PAPER FOR PRACTICAL II -SEMESTER VI

RJDSCZOOP362

	Total Marks 50
Q.1. Major experiment:	
Problems based on restriction enzymes	10M
Q.2.Minor experiment:	
Calculate the mitotic index from the given slide / photograph.	05M
Q.3. Identification of the zoogeographic realms (ANY 3)	09M
	0614
Q4. Identification of alternative sources of energy (ANY 3)	06M
Q5. Excursion report and viva based on it	10M
Q3. Excursion report and viva based on it	101/1
Q6. Viva Voce	05M
Q.7. Journal and Attendance	05 M

SCHEME OF EXAMINATION (FOR BOTH SEMESTERS)

Total: 60 marks

Internal examination

There would be two internal class tests comprising of 20 marks each (Total 40 marks).

Internal test shall be conducted in the form of MCQ Test/ Assignments/Presentations

Question paper pattern for external theory

Q.1

A ANY TWO 6 MARKS EACH--- 12 MARKS

B ANY ONE 3 MARKS

Q.2

A ANY TWO 6 MARKS EACH---- 12 MARKS

B ANY ONE 3 MARKS

Q.3

A ANY TWO 6 MARKS EACH---- 12 MARKS

B ANY ONE 3 MARKS

Q.4

A ANY TWO 6 MARKS EACH --- 12 MARKS

B ANY ONE 3 MARKS

Mapping of the course to Local/Regional/National/International relevance

Class	Course Name	Course Code	Local Relevance	Regional Relevance	National Relevance	International Relevance
T Y B Sc Zoology DSC	ANATOMY, EMBRYOL OGY, PHYSIOLO GY-I	RJDSCZOO351	Domain knowledge.	Domain knowledge. To understand the interconnection between the regional diversity and genetic differences in vertebrates.	Domain knowledge in embryology. Significance of homeostasis in physiology.	To master the concept of haematology and homeostasis
T Y B Sc Zoology DSC	ANATOMY, EMBRYOL OGY, PHYSIOLO GY-II	RJDSCZOO361	Domain knowledge in chick embryology.	Domain knowledge in cardiac physiology, embryology	Domain knowledge in cardiac physiology, immunology	To master the concept of immunology
T Y B Sc Zoology DSC	MOLECUL AR BIOLOGY, GENETICS AND WILDLIFE STUDY	RJDSCZOO352	Domain knowledge.	Domain knowledge in human genetic disorders. National parks and sanctuaries present in the region	Domain knowledge in human genetic disorders. National parks and sanctuaries across National	Global National parks and wild life management
TYBSc Zoology DSC	GENETIC ENGINEER ING, CANCER BIOLOGY, ZOOGEOG RAPHY AND ENERGY RESOURCE S	RJDSCZOO362	Domain knowledge in alternative energy resources	Domain knowledge in alternative energy resources	Domain knowledge in cancer biology	Distribution of animals in different realm. Domain knowledge in cancer biology and genetic engineering
T Y B Sc Zoology DSC	Practical	RJDSCZOOP351 RJDSCZOOP361 RJDSCZOOP352 RJDSCZOOP362	To study the physiological adaptations of the animals found locally.	To study the physiological adaptations of the animals found regionally	Training in the SOP of instruments.	Training in the field of developmental biology, heamatology and immunlogy